
Modeling Communications of Mobile Software Agents Using Petri Nets

Ali A. POUYAN, MEMBER IEEE
 Department of computer engineering

University of Birjand
IRAN

STEVE REEVES

School of computing and mathematical sciences
University of Waikato

NEW ZEALAND

ALI HASSAN BEIGI
Department of computer engineering

University of Birjand
IRAN

Abstract: - This paper presents a Petri net approach to modeling communications of mobile software agents in
multiagent systems. Mobile agents are conceptualized in Petri net semantics by formalizing in terms of basic agent
template. The proposed software agent components constitute the elements and building blocks of the distributed
mobile agent systems. A basic agent template is formalized as an entity consisting of a set of actions, a set of rules,
which govern the agent communications. A theoretical formal model is presented for designing and describing the
communications of mobile software agents in distributed asynchronous network systems. It supports formal
reasoning based on Petri nets.

Key-Words: - mobile agents, Petri nets, modeling, communication, multiagent systems, formal methods

1 Introduction
Mobile software agents have emerged as a highly
significant paradigm in distributed asynchronous
computing, software engineering, robotics, artificial
intelligence and industrial control applications. It is,
especially, becoming increasingly important as the
Web environment is undergoing a transformation into
a platform for highly distributed applications such as
web-based systems and electronic commerce.
Specifically, mobile software agents are a generic
network programming paradigm, where migrating
software components (computer programs) carry out
certain distributed tasks by roaming the heterogeneous
network systems.

The concept of mobile software agents [1], [2], or
simply mobile agents, evolved from autonomous

agents [3] introduced a decade ago as a powerful
abstraction for conceptualizing large-scale distributed
asynchronous computer network systems [4]. It
supports a wide range of different types of computer
applications such as electronic commerce, network
management, distributed information retrieval,
workflow management, real-time conferencing;
wireless/cellular based mobile computing and the
implementation of telecommunication services. In
general, the mobile agent paradigm is considered as a
solution to reducing network congestion due to heavy
traffic load in the network and managing its
complexity.

Mobile agents are executing programs that migrate
from machine to machine in a heterogeneous network
[5], [6]. They run within agent server programs as

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

logical places referred to as agencies. When a mobile
agent migrates to a specific node in the network, its
execution is suspended at the original agency. The
program code, control information, data and execution
status are transferred to the host agency. The mobile
agent resumes execution after being re-instantiated at
the destination environment. Mobile agents have the
ability to prevent or solve problems encountered in the
network during their journey, and they have the ability
to communicate with other. Mobile agent based
software systems have gained wide acceptance as a
conceptual framework that provides, among others,
the following benefits [7]: more efficient use of
communication resources by using much less
bandwidth than a conventional correspondent RPC-
based client; dynamic load balancing by partitioning a
task into components that are distributed across
multiple processors; flexible management for software
deployment and maintenance; adequate support for
interactions with environment and flexible support for
disconnected operations.

A fundamental issue in the development of
software systems based on mobile agents is the
support of formal reasoning and analysis of designed
systems [3]. For most real-world applications with a
large number of communicating agents, it is
fundamental that system behavior exhibits certain
desired logical properties such as absence of
deadlocks and reversibility or cyclic behavior.
Although mobile agent software systems have been
investigated by many researchers from different points
of view and diverse orientations [1], work in formal
analysis of design and communication behavior in
distributed systems implemented with mobile agents
is still needed. The aim of this paper is to develop a
theoretical framework and modeling approach for
communication behavior of mobile agents in
multiagent systems.

The rest of this paper is organized as follows:
Section 2 gives a brief introduction to mobile agents
and Petri nets and introduces a formal notion of basic
agent template. Section 3 describes the proposed
approach for modeling agent communications. In
section 4 communications of agents are modeled
based on the proposed approach. Finally, a conclusion
is presented and a sketch is discussed for the future
work.

2 Communications Modeling
In this section, we first introduce mobile agents
briefly. Basic agent template will then be defined. To
make the paper self-contained, Petri nets (PN) will be
defined to be used throughout the paper. Then, the
proposed modeling approach of mobile agent
communications using Petri nets will be described.

2.1 Mobile Agents
In mobile agent software systems servers and agents
are the most fundamental concepts [2]. A mobile
agent system includes a number of servers, where
various resources and services are provided and
computation can take place. Mobile agent paradigm
has evolved from two antecedents: client-server model
and remote evaluation (REV) model [8]. In client-
server model processes resided in the client and server
communicate synchronously either through message
passing or remote procedure call (RPC) mechanism.
In RPC, data is transmitted in both directions between
client and server. In REV model, client sends its own
procedure code to a server rather than calling a remote
procedure [9].

Mobile agents can autonomously visit several
hosts without the need for continuously interacting
with originating host. Agents can have multiple hops
and can be detached from the client without being
permanently connected to the originating host. This
distinguished characteristic makes mobile agent-based
software systems ideal for handling temporary
network connections in mobile computing. This
makes mobile agents different from applets and from
the servlets according to the movement pattern. An
agent can visit a number of hosts and it does not need
to know the complete itinerary in advance.
Furthermore, the routing table of a mobile agent can
be changed based on information gathered at
intermediate hops during its journey in the network.
Two patterns of mobility can be defined based on the
state from which a mobile agent resumes execution
after migration: weak migration and strong migration
[10]. By weak migration, the code and part of the
execution state (code and data but no control state) are
moved. After migration, the execution resumes from
the beginning or from a specific procedure. Strong
migration allows the migration of both the code and
the whole execution state (code, data and state).
Mobile agent resumes execution from the point where
it was stopped before migration. Other aspects of

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

mobile agents relating to agent migration can also be
investigated based on the scope of the study.

2.2 Petri Nets
We use Petri Nets (PN) formalism to model
communication behavior of software systems based
on mobile agents. PNs; as a high level graphical
specification language, have a sound and mature
mathematical foundation. It allows a formal and direct
investigation of factors such as resource conflicts,
synchronization and concurrency in distributed
systems. For quick reference, a brief overview of Petri
nets is provided in this section, a more detailed
coverage can be found in [11].

A Petri net consists of a structural part and a
dynamic part. A PN structure, N, is a four-tuple, N =
(P, T, V, F) where P = {p1,p2,..., pn} is a finite set of
places, n ≥ 0. T = {t1,t2,..., tm} is a finite set of
transitions, m ≥ 0 (T∪P form the nodes of N) V ⊆
{(P×T)∪(T×P) } is a set of directed arcs (or a flow
relation). F: V → ℵ is a multiplicity (incidence)
function, ℵ = {0,1,2,3…}. P ∩ T = ∅ and P ∪ T ≠ ∅
(F∩(T×T) = (F∩(P×P) = ∅). A PN structure can be
represented as a directed bipartite graph. In a Petri net
graph, places are represented by circles and transitions
by bars or boxes. Places and transitions are connected
with directed arcs. Assignment of tokens to the places
of a PN structure is called its marking and represents
the state of the modeled system at each time instance.
A marking µ of a Petri net N = (P, T, V, F) is a
mapping µ : P → ℵ. Tokens in a Petri net graph are
represented by dots or positive numbers in places. The
number of tokens in place p of a Petri net is formally
denoted by µ(p). A place p∈P is marked if µ(p)>0,
otherwise it is unmarked. A Petri net is marked if a
marking function can be assigned to it. The state of a
Petri net is defined by its marking. The dynamic part
of a Petri net involves the change in markings over
time. The initial state is denoted by µ0. The set of all
possible markings (states) reachable from µ is called
the reachability set. The reachability set of a PN
determines the state space of the net system. A
transition t is said to be enabled if µ(p) ≥ F (pi, tj), ∀
pi ∈ P. An enabled transition can fire. Firing
transition, t removes F (pi, t) tokens from each pi
belongs to the set of its input places and deposits F (t,
pk) tokens in each pk belongs to the set of its output
places. The firing of a transition changes the state of

the Petri net.
A Petri net is bounded if µ(p) ≤ k, ∀p∈P, where

k is some positive integer. Boundedness guarantees
the stability of the system and lack of overflow. A
Petri net, for µ0, is said to be reversible if for each
marking µ ∈ Z(N,µ0), µ0 is reachable from µ.
Reversibility guarantees the repeatability of discrete
events (cyclic behavior) of the system. A Petri net is
said to be live iff ∀t∈T, and ∀µ∈Z(N,µ), there
exists a firing sequence of transitions leading to a
marking which enables transition t. The concept of
liveness is related to deadlock situations in distributed
concurrent systems. Liveness guarantees a deadlock
free situation, which ensures that all the actions,
associated with system specification become active. A
Petri net that is live, bounded and reversible is called a
well-behaved PN.

2.3 Basic Agent Template
In this section we give a definition of agent which is
consistent with our approach. Before giving our
formal definition, some fundamental concepts must be
explained. These notions are “basic agent template”,
“action” and “event. The environment of agents can
be considered as a composite system made of agents
of different kinds. Each agent is a flow of actions
processing certain objects, is triggered by events, and
changes the state of the system. Communicating
agents have characteristics and behaviors that need to
be taken into account to correctly model the behavior
of the system.

An agent can be defined as an autonomous (having
control over its own actions) software entity that is
situated within an executing environment. It can also
interact (communicate) with its environment and other
agents while it is bond to certain predefined task on
the user’s behalf. From an object-oriented point of
view, an agent is conceptualized as an encapsulated
software entity that can send messages to and receive
messages from other objects. It has a number of
methods to process the messages and change its state
as an encapsulated entity. An autonomous agent, as an
active object has its own tasks that may be composed
of several kinds of sequential or concurrent subtasks
to be accomplished. An agent with the property of
mobility (migration) between different servers is a
mobile agent. The following is a formal definition of a
basic agent template:

Definition 1 A basic agent template is a tuple (P,

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

T, V, F, Pc, Tc, µ0), where (P, T, V, F) is a PN
structure, µ0 is the initial state of the PN, Pc ⊆ P ≠ ∅
and Tc ⊆ T ≠ ∅, Pc and Tc are called the interface
sets of nodes such that (F(tj, pi) or F(pi, tj) ≠ ∅ ∀ pi
∈ Pc and tj ∈ Tc).

Fig.1. Abstract PN model of a basic agent template

A multi-agent system is a set of communicating

agents; each agent is situated in some environment
and is able to interact with its environment and with
other agents. This definition appears to be adequate
for capturing the characteristics of the systems we are
dealing with. But we need a formal definition of the
concept of agent which is also consistent with our
proposed approach. The definition of agent needs to
be the one that can be used to compare or to combine
different approaches. Moreover, the definition of
agent can be used to describe relevant entities
uniformly, independently of their physical nature. If a
single system model has to represent different kinds of
entities, a unique concept of agent provided by the
definition is used to uniformly describe conceptual
interfaces among them. Using mathematical notions
enables us to reach a common interpretation of the
concept of agent.

Definition 2 An action is a function F : I→ O ,
guarded (conditioned) by P (c1,c2, …,cn) where I is
the input matrix consisting of input vectors, O is the
output vector, P is a Boolean expression linking
predicates c1,c2, …,cn.

F can imply any functionality; a mathematical
function, a transformation rule, an algorithm, etc.
Actions in general perform by transforming inputs
into outputs. P indicates some pre-conditions which
must be satisfied before F can be executed. These
conditions may be internal or external to F. The
definition of action is critical in order to completely
define an agent within a multi-agent system. Actions
not only define the types of internal processing an
agent must do, but also how interactions with other
agents relate to those internal processes. This will be
of vital importance in our modeling approach.

Definition 3 An event is an instantaneous or an
atomic action without time duration which causes a
change in the system state.

It is very important to distinguish between an event
and an action in our discussion. According to our
definitions actions are extended or time-consuming of
which duration is bounded between a pair of (start,
end) events. During the time interval of an action,
other events may occur. Two actions can overlap in
time if the start of one precedes the end of the other.
Events can be expressed as logical propositions or
predicates. It should be noted that events only signal
the change in the system state and do not convey any
information regarding how the change has been made.

Definition 4 An Agent A is a 5-tuple A (A, O, G,
F, C) where, A is a set of actions, O is a set of
objects, G is a finite set of triggering conditions
{c1,c2, …,cn} which must be satisfied to cause a state
change, F is a function F : (O × A) ∪ (A × O) →
{0,1}; A ∩ O = ∅, A ∪ O ≠ ∅; F (οi,αj) = 1 if οi is
an input of αj and 0 otherwise. F (αj,οi) = 1 if οi is an
output of αj and 0 otherwise, C is a finite set of
communicative acts (rules) governing the agent
communications (determine the type and content of
messages).

In terms of definition 4 an agent is then described
as a “temporal-logical” sequence of actions. That is,
as a series of transitions from one (internal) state to
another, triggered by events. This set of transitions
comes to an end point when a pre-specified
terminating state is reached or the state is considered
to be final based on certain pro-active actions of an
agent. This dimension of the definition captures
system functionality. It is the fundamental idea for
describing a dynamic system functioning. The other
dimension focuses on the behavioral aspects. This
captures the flow of information within the system
based on proving correctness in transition from one
state to the next, while certain conditions are related to
each state.

We model agent behavior as consisting of several
concurrent actions. Each of these actions can execute
in parallel to define the behavior of the agent. Actions
are used to specify actual functions carried out by the
agent and are performed inside the agent states. Each
action may have a set of invariants that must hold
during the entire life of the action. Actions are defined
in the form of functions. Each function may return a
result and may have a number of input parameters.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

While these actions execute concurrently and carry
out high-level behavior, they can be coordinated using
internal events. States encompass the processing that
goes on internal to the agent. This processing is
specified by a sequence of activities specified in a
functional form. Transitions describe communications
among agents. To communicate with other agents,
external messages can be sent and received.

Semantics of concurrent actions are based on Petri
nets. However, because a single agent is specified by
a number of concurrent action models, the state of an
agent is defined by the set of current states in each of
the agent’s active concurrent actions. Because
activities occur in system states, agents are typically
in a state for a finite amount of time. Furthermore, we
assume that transitions between states occur
instantaneously.

3 Inter-agent Communication
Multi-agent systems can be categorized as
information-flow oriented, role oriented and control
oriented [12]. In this paper, we focus on event-based
information-flow oriented MAS architecture.
Information-flow oriented architecture reflects the
interactions and communication in multi-agent
systems, and the inter-agent communications. It
focuses on the capability of the system to deal with
complex distributed real-world scenarios, and
determines operation mechanisms.

In the previous section we have defined the
concept of an event as an instantaneous action, whose
occurrence may require simultaneous participation by
certain actions as conditions or guards. In this section
we shall consider a communication as a member of a
special class of events. A multi-agent system is
viewed as a concurrent environment. Formally
speaking, a multi-agent system is considered as a pair
(A, C) in which A is a finite set of agents involved in a
system.

C is the finite set of communicative acts
maintaining the interactions between agents. At this
stage we are able to produce a precise definition of a
message whose type and content is defined by a
communicative act.

Definition 5 A message c ∈C is a point-to-point,
one-way virtual entity which transfers ‘information’
from a source-agent as to a target-agent at such that C
⊂ A × A.

A communication is an event, which is described
by its source and target agents and a signal that
conveys information and flow of control. A message
is then a virtual means on which a communication
takes place, through a communicative act. Mapping
this concept to the Petri net arena will be explained in
the next section. Now, based on definition 3, a
mapping F from C to A × A can be defined.

Definition 6 The set of rules governing inter-agent
communication is a mapping from communicative
acts to the set of A × A, i.e., F : C → A × A.

Thus, F(c) = (as, at) implies that the rules
governing communicative act depend on the
relationship between the source and target agents.
This implication is extremely important when we
establish a ‘functional’ interdependency in Petri
net-based agent models in our methodology.
Communicative acts can also be classified based
on their properties and impact on the target
agents. This is beyond the scope of this paper and
is a reason for future work.

4 PN Model of Agent Communications
In this section we provide a Petri net representation
based on the definition of agent and other concepts
provided in sections 2 and 3. In Petri net-based
models places can be viewed as ‘mailboxes’ and
instances of places, i.e. tokens, as messages,
portraying a view of a Petri net model as a distributed
model of concurrency with a form of asynchronous
message passing. In the proposed method the
interaction between agents, or message passing, takes
place through Petri net structures rather than an arc
between two nodes (place or transition) as suggested
in other methods in the literature. In other words,
inter-agent communications happen as events via
certain communicative acts containing the type and
information of a message. These rules may be defined
according to the structural relationships between Petri
net modules that specify the entire model as a set of
inter-related components or modules which hide their
internal details. The advantage of this method is that
the resultant net model of the system has already been
extended as a correct Petri net system and there is no
need for any posterior analysis while it grows in
complexity. This reduces the modeling effort by a
major amount. It should be noted that in Petri net
modeling when the systems become large, the state-

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

space explosion problem happens, so net system
analysis becomes computationally difficult and in
some cases impractical. Theoretically, the augmented
PN models are guaranteed to be well-behaved
regardless of the application domain and the design
level [13]. For instance, to host a mobile agent after
migration, each host is supposed to provide the
execution environment and the facilities for agent
activation and deactivation. To accomplish its task,
the mobile agent communicates with stationary
environment, which consists of resources such as
service agents. All these details can be modeled as PN
structures, and the describing modules can then be
composed and integrated to the PN model at system
level. For a better understanding of the theoretical
concepts developed in sections 2 and 3, we exemplify
our method by constructing a multiagent system for
the seller and buyer problem [14] in the domain of
electronic commerce. All of the communications
between seller and buyer are accomplished by the
facilitator agent. This has been depicted in Figure 2.

Fig.2. Communications between seller and buyer

The facilitator agent has the role of matchmaker
between the sellers and buyers. It manages the
marketplace, and includes all kinds of seller agents
and buyer agents to interact in the market. The
facilitator agent recommends a prospective seller to a
buyer, while sellers have already advertised the desire
to sell items (products and services) with the
facilitator agent. The sellers and buyers communicate
indirectly through the facilitator agent, after being
introduced in the marketplace. Negotiations between
seller and buyer through facilitator could proceed
resulting in either a sale (accept) or rejection the offer.
The following messages are being communicated
through the facilitator during each session of sales
negotiation: facilitator is asked by a buyer to
recommend a seller for an item, the seller is
introduced to the buyer, buyer asks seller if the item is
available for sale, seller either makes an offer to the
buyer with an initial price, or denies that the required
tem is for sale, buyer accepts the offer (and echo the

offer back to the seller) or make a counter offer to the
seller, if the seller accepts the offer, the sales
transaction is over (successful) and if the seller rejects
the offer, the negotiation is over (unsuccessful)
 Based the proposed method in this paper, we first
define the seller, buyer and facilitator agents in terms
of definitions given in sections 2 and 3. For each of
this three agent type we need to define a PN set (A (A,
O, G, F, C)).

SELLER AGENT:
Actions: presenting itself to facilitator agent,
presenting products to facilitator agent, negotiating
with buyer through facilitator agent, accepting buyer’s
offer or make a counter offer and rejection the
transaction.
 Objects: Products (items for sale)
 Triggering conditions (appears as conditions):
Presenting itself to Facilitator agent, seller and buyer
start negotiation, acceptation of buyer price, Rejection
of the transaction and making a counter offer.
 F : (O × A) ∪ (A × O) → {1,0} : input and
output function
 Communicative rules

FACILITATOR AGENT:
Actions: listing the sellers and buyers, finding ordered
items and its seller, presenting seller and buyer to
another, passing offers and message between seller
and buyer, presenting the final price to both sides and
updating the lists.
 Objects: Lists, orders, offers, messages and
products (items)
 Triggering conditions (appears as conditions):
listing the sellers and buyers, finding ordered items
and the seller, agreement of seller and buyer, offering
a new price from one side, accepting the suggested
price by one side and rejecting the transaction by one
side.
 F: (O × A) ∪ (A × O) → {1,0} : input and
output function
 Communicative rules

BUYER AGENT:
Actions: Presenting itself to Facilitator agent,
ordering needed items one by one, negotiating with
seller through facilitator agent, accepting of sellers
offer or make a counter offer, and rejection the
transaction
 Objects: Orders

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

 Triggering conditions (appear as conditions):
Presenting itself to Facilitator agent, generation an
order, accepting the seller price, rejecting the
transaction and offering a new price. These conditions
may appear in forms that can be evaluated as true or
false conditions or pre-conditions.
 F: (O × A) ∪ (A × O) → {1,0} : input and
output function
 Communicative rules: determine the connections
of the actions modelled by Petri net modules

 We know define the transitions in the Petri net
model of the seller-buyer problem as follows:
 t1: listing the products and orders, t2: ready
notification, t3: Finding ordered items, t4: Presenting
seller and buyer to each other, t5: ordering an item, t6:
telling the price to buyer, t7: analyzing the price by
buyer, t8: offering a new price by buyer, t9: accepting
of seller’s price by buyer, t10: rejecting the
transaction, t11: telling the buyer’s price to seller, t12:
offering a new price, t13: accepting the buyer’s price
by seller, t14: rejecting the transaction, t15: presenting
the final price to both sides, t16: updating the lists.
 In this model places appears as triggering
conditions and tokens in places of the corresponding
Petri net model represents the satisfaction of certain
conditions for an event to be triggered. The Petri net
model of the seller and buyer problem is shown in
Figure 3. Marked places P7,P1 and P8 represent the
satisfaction of the condition “existence a list of
items”, which in turn enables transaction T1 to be
fired. Places P2 and P5 represents “ready to receive
orders” and “facilitator confirmation”, respectively.

Fig.3. Petri net model of the seller and buyer

problem

5 Conclusion
In this paper, we have presented a formal method
based on Petri nets to model complex mobile agent

communications in multiagent systems. We have
formalized relationships between agents by defining a
basic agent template. The agent template concept has
been defined as an entity consisting of a set of rules, a
set of internal actions and interface nodes for agent
communications. Constructed Petri net structure has
guarantee the well-behavedness of the Petri net based
agent model after interacting with other agents. The
constructed Petri net models of mobile agents can be
expanded by adding details to the designed net
systems. This enables us to construct Petri net models
of mobile agent systems in an incremental and rule
based fashion based on some architectural
assumptions. Our work is ongoing, and currently still
on theory. Additional methods need to be developed
to relate each agent behavior with the dynamically
changing system at the system level. This direction
supported by application examples and tool
supporting has been considered as a major trend of
future work.

References:
[1] R. Guttman, A. Moukas, and P. Maes, Agent-

mediated Electronic Commerce: A Survey
Knowledge Engineering Review, June 1998.

[2] S. Green, L. Hurst, B. Nangle, P. Cunningham, F.
Somers, and R. Evans, Software Agents: A
Review, Technical report TCD-CS-1997-06,
Trinity College Dublin, May 1997.

[3] T.J. Rogers, R. Ross, and V.S. Subramanian,
IMPACT: A System for Building Agent
Applications. Journal of Intelligent Information
Systems, Vol. 14, 2000, pp. 95-113.

[4] F.M.T. Brazier, Dunin, B. Keplicz, N. Jennings,
and J. Truer, DESIRE: Modeling Multi-Agent
Systems in a Compositional Formal Framework,
Int’l Journal of Cooperative Information Systems,
Vol. 6, Special Issue on Formal Methods in
Cooperative Information Systems: Multi-Agent
Systems, 1997, pp. 67-94.

[5] M. Iglesias, Garrijo, and J. Centeno-González, A
Survey of Agent-Oriented Methodologies,
Proceedings of the Fifth Int’l Workshop on Agent
Theories, Architectures, and Language (ATAL-
98),1998, pp. 317-330.

[6] M. Wooldridge, and N.R. Jennings, Special Issue
on Intelligent Agents and Multi-Agent Systems,
Applied Artificial Intelligence Journal, 1996.

[7] M. Petit, P. Heymans, and P.Y. Schobbens,
Agents as a key concept for Information Systems
Engineering Requirements, Position paper,

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

Department of Computer Science, University of
Namur, Belgium, 1999.

[8] M. Kolp, P. Giorgini, and J. Mylopoulos,
Organizational multi-agent architectures: A
mobile robot example, Proceedings of AAMAS,
2002, Bologna, Italy, 2002, pp. 94-95.

[9] G. Di. Marzo Seregeundo, et al, Survey of
theories for mobile agents, Technical report, No.
106, university of Geneva, 1996.

[10] H. Xu, and S.M. Shatz, An Agent-Based Petri Net
Model with Application to Seller/Buyer Design in
Electronic Commerce, Proceedings of the Fifth
International Symposium on Autonomous
Decentralized Systems (ISADS 2001), March 26-
28, Dallas, Texas, USA 2001, pp. 11-18.

[11] T. Murata, Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, Vol.77,
No.4, April 1989, pp. 541-580.

[12] A. Pouyan, Behavioral Modeling for Mobile
Agent Systems Using Petri Nets, Proceedings of
SMC IEEE Conference, Hague, The Netherlands,
October, 2004.

[13] A. Pouyan, A Petri Net Based Approach to
Design Well Behaved Discrete Event Systems,
Proceedings of SMC IEEE Conference,
Washington D.C., USA, October 2003.

[14] J. Bigus, and J. Bigus, Constructing Intelligent
Agents with Java, John Wiley & Sons, USA,
1998.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp25-32)

