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Abstract.- This brief paper discusses a linear
fractional representation (LFR) of parameter-
dependent  nonlinear  systems with real rational
nonlinearities and point-delayed dynamics.
Sufficient conditions for robust global asymptotic
stability independent of the delays are investigated
in terms of testing a finite number of linear matrix
inequalities when the (perhaps time-varying)
uncertain parameter vector lies within a known
polytope containing the origin. Such inequalities
are obtained from the stability analysis via
Lyapunov Stability Theory by taking advantage of
the characterization of the uncertainties within
polytopes.

Index Terms.- Time-delayed dynamics,
parameter-dependent systems, point delays, robust
stability.

I. INTRODUCTION
Time-delay systems are very common in nature
like, for instance, related to transportation
problems, population growing, signal
transmission or neural network-based models (see,
for instance [1-12]). The stability and stabilization
of such systems has been widely studied in the

literature in connection, for instance, with
Lyapunov theory or frequency domain methods
(see, for instance, [1-8] and references therein). A
part of the related results are referred to as stability
independent of the delays since they are
independent of the  sizes of the delays. In this
paper, the global asymptotic stability independent
of a single point delay is investigated provided that
the dynamic system is subject to internal ( i.e. in
the state) delays and subject to uncertain rational
real-valued (and perhaps, time-varying)
nonlinearities parametrized within a known
polytope containing the origin. The problem
statement and the main robust stability result are
developed in Section II via Lyapunov’ s second
method. Such a main result basically consists of
testing the positive negativeness of a set of
matrices which are directly obtained from
calculations related to the vertices of the
polytope that parametrizes the uncertainties.
Finally, two simple illustrative examples are
given in Section III.

II. STABILITY ANALYSIS USING
LYAPUNOV FUNCTIONS

Consider the parameter-dependent  system of point
delay h ≥ 0

ẋ(t) = A θ(t )( ) x( t) + A 1 x t − h( ) + B θ(t )( )u( t)                          (1.a)

y(t ) = C θ (t)( )x( t) + D θ(t)( )u(t )                                                (1.b)

where x(t )∈R n , u( t )∈R nu and

y(t )∈R n y are the state, input and measurable

signals respectively   and  A, A 1 , C and D are

real-valued rational functions of time-varying
parameter vector
θ (t) = θ 1(t) , θ 2(t),..., θ m( t)[ ] T ∈ Θ
 for all t ≥ 0 . The parameter set Θ  is assumed to

be a polytope containing the origin such that (1.a)

has a mild solution for all time for all θ(t) for any
given absolute continuous function
ϕ : −h ,0[ ]→R n  ( x(0) = ϕ (0) ) of initial

conditions. This is not restrictive  since the results
obtained in this paper are also applicable if
formulated over any polytope containing the
parameter vector. Since A and A 1 are real-valued

rational functions of θ(t), there exist associate
Linear Fractional representations ( LFR ):
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A θ( ) = A 0 θ( ) + B q0 ∆ 0 θ( ) I d − D pq0 ∆ 0 θ( )( ) −1C p 0                                  (2)

A 1 θ( ) = A 01 θ( ) + B q1 ∆ 1 θ( ) I d 1
− D pq1 ∆ 1 θ( )( ) −1 Cp1                                 (3)

for appropriate matrix functions A 0 , A 01 ,B qi ,

C qi , D pqi  and ∆ i  ( i=0,1) of appropriate sizes,

where I j denotes the j-identity matrix. The

subscript is deleted when the size of the identity

matrix follows directly from context. The related
free-delay case has been investigated in [13] and
references there in. For well-posedness, it is
assumed that both above inverses exist  over Θ.
Thus, a state -space realization of the unforced (1)
is:

ẋ(t) = A 0 x(t ) + A 01 x t −h( ) + B q0 q 0 t( ) + Bq1q 1 t−h( )
p i (t ) = C pi x(t ) + D pqi q i( t) = I−D pqi∆ i θ( )( ) −1Cpi x(t )

q i ( t) = ∆ i θ( )p i ( t) =∆ i θ( ) I −D pqi ∆ i θ( )( ) −1 C pi x(t)

∆ i θ( ) = Diag θ 1 I s
1 i

,..., θm I s mi( )                                       (4)

where q i , pi ∈ R d i  and the degrees of the

LFR are s i = Max
1≤k ≤r

ski( )  for i=0,1. Note  that

the variables q (.)  are normalized variables for the

variables p (.)  according to the size of the current

uncertainty parameter vector θ(t) through the
normalized matrix ∆ (.) .

If the unforced system ( i.e. for u≡ 0 ) is

globally asymptotically stable independent of the
delay for all parametrization in Θ then both
A 0 and A 0 + A 01( )  are stability matrices  ( i.e.

with all their eigenvalues in Re s < 0) since
Θ includes zero and the system is asymptotically
stable  for the limit delays h=0 and h →∞ . The

robust stability margin of (1) is defined in a
natural way as σ = Sup ρ> 0{ } such that (1) is

robustly stable over ρ Θ  for all ρ∈ 0, σ[ ].
Since  the  parameter set Θ is a polytope of v Θ

vertices Ver Θ( ) = Θ ( i ) ;i =1, v Θ{ } then

∆ i = ∆ i θ( ) : θ∈Θ{ } ( i=0,1 are polytopes of

v i  vertices ∆ i
k( )

 ;  k = 1, v i  ( i=0,1). The

number of those vertices depends, in general, on

the number of vertices of Θ and on i=0,1. The

total number of vertices ∆
k 0 ,k 1( )

, for

k i = 1, v i , i=0,1 of the polytope

∆ =∆ 0 ×∆ 1  which parametrizes the matrices of

the dynamic system (1) is upper-bounded by  v=
v 0 × v 1. The following result is proved in

Appendix A.

Theorem 1 . The (unforced) system (2) is
globally asymptotically stable independent of the
delay h if there exist real matrix functions

P = P T > 0, S = ST > 0 and matrices

G
∆ i ∆ (θ)( ) ∈C n ×d i ,

H
∆ i ∆ (θ)( ) ∈ Cd i ×d i  for each ∆ i θ( )∈ ∆ i

; i=0,1 as θ∈Θ such that the square (2n +

d 0 + d1 ) real matrix function

Q ∆ (θ)( ) = Q T ∆ (θ)( ) = Block Matrix

Q i j ∆ (θ)( ) ;i , j =1,3[ ] of block matrices

defined as follows is negative definite for all
θ ∈Θ :

Q 11 = A 00
T P +PA 0 0 + S + G ∆0 C p0 + C p0

T G ∆ 0
*   ; Q 12 =Q 21

T = PA 01

Q 13 =Q 31
T = P B q 0 ∆ 0( )+G ∆ 0 D pq0 ∆ 0( )−G ∆ 0 + C p0

T H ∆0
* , P B q1 ∆ 1( )[ ]
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Q 22 = G ∆1 C p1 + C p1
T G ∆1

* − S[ ]
Q 23 = Q 32

T = Block Matrix 0, G ∆1 D pq 1 ∆ 1( ) − G ∆1 + C p 1
T H ∆1

*[ ]
Q 33 = Block Diag H ∆ 0 D pq 0 ∆ 0( ) + D pq0 ∆ 0( ) T H ∆ 0

* − H ∆ 0 −H ∆0
* ,[

H ∆1 D pq1 ∆ 1( ) + D pq1 ∆ 1( ) T H ∆1
* − H ∆1 −H ∆1

* ]              (5) ❏

If G ∆ (.)  and H ∆ (.)  are restricted to have special

forms such that Q (∆ (θ)  ) is convex for Θ being

convex then it suffices that

Q ∆ (θ)( ) = Q T ∆ (θ)( ) < 0 for  the values

of ∆ i θ( )   at  all their vertices ; i.e. to replace

matrices ∆ i (θ) in (5) by all its vertices

∆ i
(k i ) ; k i =1, v i ; i =0,1 , to guarantee the

global asymptotic stability. In that  way, stability
is guaranteed if the requested positive
negativeness is fulfilled by (at most) v real
symmetric matrices. The following corollaries are
also useful to test the global asymptotic stability
independent of the delays in practical situations.
Their proofs are very similar to that of Theorem 1.

Corollary 1 . The (unforced) system (2) is
globally asymptotically stable independent of the

delay h if there exist real matrices P = P T > 0,

S = ST > 0 , M i = M i
T > 0 and matrices

G ∆ i ∈Cn×d i , H ∆ i ∈C d i × d i for each

∆ i
(k ) ∈∆ i ; k = 1, v i , i=0,1 such that

v = v 0 × v1  square (2n + d 0 + d1 ) symmetric

real matrices Q ' k 0 , k 1( ) = Block Matrix

Q
ij

' k 0 , k 1( ) ; i , j =1,3[ ] of block matrices

defined as follows is negative definite:

Q
11

' = A 00
T P +PA 00 + S + Cp0

T M 0 Cp 0    ; Q
12

' =Q
21

' T
= PA 01

Q
13

' k 0 , k 1( ) = Q 31
' T k 0 , k 1( ) = P B q0 ∆ 0

(k 0 )( )+ C p 0
T M0 D pq0 ∆ 0

(k 0 )( ) , P B q1 ∆ 1

(k 1 )( )[ ]
Q

2 2

' = C p1
T M 1 Cp1 − S[ ]

Q
23

' k 0 , k 1( ) = Q 32
' T k 0 , k 1( ) = Block Matrix 0 , C p1

T M1 C p1 − S[ ]
Q

33

' k 0 , k 1( ) = Block Diag −M0 + D pq 0 ∆ 0
( k 0 )( ) T 

  M 0 D pq 0 ∆ 0
( k 0 )( )

                                                       , .... , −M 1 + D pq 1 ∆ 1
(k 1( ) T M1 D pq 1 ∆ 1

(k 1( ) T  
  
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for k i = 0, v i ; i = 0,1                     (6) ❏

Corollary 2 . Assume unity LFR degrees (i.e.
s 0 = s 1 =1) of the LFR´s (2)-(3). Thus Corollary

1 also holds if M i  is replaced  by, in general

distinct, symmetric positive definite  real matrices

M i
k i( )

 at any of the v test matrices (6) for each

ki = 1, v i ; i= 0,1. ❏

Remark 1 . Note that Corollary 2 is stronger
than Corollary 1 since v = v 0 × v 1 different

M (.) -matrices, rather than two, are allowed in the

v set of tests  of negative definiteness to guarantee
stability. Note also that both Corollaries 1- 2
automatically hold if all the tests do not fail for a
unique M- matrix. ❏

Note that  the extension of all the above results to
the case of presence of multiple point delays is
direct by completing the sizes and composition of
the matrices for the stability tests with the
necessary block matrices associated to the various
extra delays.

III. EXAMPLES

Example 1: Consider the first-order system with
parameter-dependent  uncertainty

ẋ(t ) = A θ (t )( ) x(t ) + A 1 θ(t )( ) x(t −h )
                                                         (7)

where θ(t) ∈ θ , θ[ ]  a single (perhaps time-

varying) uncertain real parameter and A (.) and B(.)
are rational functions of θ (t)  given by

A = a 0 +
b 0 θ

1− d 0 θ
=

0.6017 θ− 1

1 − 0. 4517 θ
;

A 1 = a 1 +
b 1 θ

1 − d 1 θ
=

0.1125 − 0.337 θ

1− 0.1 θ

with uncertainty independent values a 0 =− 1 and

a 1 = 0.1125 , respectively. The uncertainty-free

problem is asymptotically stable independent of

the delay h since a 0 < 0 and a 0 > a 1 .

Assume that θ  =− θ = 0.7 . Thus,  Corollary 1

is tested with the 4 × 4 real symmetric matrices
obtained from the two distinct (matrix) vertices  at

θ= ±θ of the (convex) symmetric matrix

function:

2a 0 p + s +m 0 pa 1 p b 0 + m 0d 0( )θ p b1 θ

pa 1 m 1 − s 0 m 1 −d 1θ

p b 0 + m 0 d 0( )θ 0 m 0 d 0
2 θ 2 − 1( ) 0

p b1 θ m 1 −d 1θ 0 m 1 d 1
2 θ 2 − 1( )

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Those vertices are obtained from evaluating all the
distinct possible combinations at the positions

(1,3), (1,4) and (2,4) at ± θ  using the  structure

and symmetry properties of the matrix function
since the remaining position take identical
numerical values at all the potential vertices for θ
=± θ . For the values p=s=2.11,

m 0 = m 1 =1.11. Corollary 1 ensures that the

eighth matrices are negative definite and, thus, the
system is globally asymptotically stable

independent of the delay. The stability test might
be performed also via Corollary 2 by using
distinct positive real numbers
m 0 ,m 1 ,m 0 , m 1 at the related matrix

vertices generated from using boundary values of θ
at the positions (1, 3) and (2,4) since the LFR
degrees are s 0,1 = 1.

Example 2: An unforced second-order neural
network with point delays belonging to a similar
class to that analyzed in [12] is given by

ẋ i (t) = − a ij
j = 1

2

∑ x i ( t) + w ij
j= 1

2

∑ θ (t )( ) x j (t − h)  ;  i =1, 2                        (8)
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where, contrarily to the class discussed in [12], the
structure of the delay-free part is not necessarily
diagonal. The network is of intervalized parameters
if those parameters very within prescribed
intervals. The stability analysis proposed in
Section II may be used to discuss the situation
arising when the adjusted weights are rational

functions of  time-varying parameters subject to
saturations. Consider the particular neural network
of the class (8) described in matrix form via (7)

with A =
0 1

−1 −1

 

 
 




 ;  and

A 1 =
0 0

0.022 + 0.044θ 1

1 − 1.3θ 1

0.04 + 0.019 θ 2

1 − 0.56 θ 1

 

 

 
 
 

 

 

 
 
 

        =
0 0

0.215 0.043

 

 
 




+

θ1 0

0 θ 2

 

 
 

 

 
 

1

1 −d 1θ 1

0

0
1

1− d 2 θ1

 

 

 
 
 
 

 

 

 
 
 
 

0 0

b 1 b 2

 

 
 






where only the delayed dynamics depends on a
two-dimensional parametrical vector function

θ(t) = θ 1(t ), θ 2 (t)[ ] T  which takes values  in

some subset Sθ = θ1 , θ 1[ ] × θ 2 , θ 2[ ] of

R2 . Note that s 0 =0 , since the delay-free

dynamics is constant, and s 1= 1 .There are four

distinct matrices for stability checking if Corollary
1 is used. The system is found to be
asymptotically stable independent of the delay  for

θ 1 = −θ 1 = 0.3  ; θ 2 = − θ 2 = 0.7 .
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APPENDIX A

Proof of Theorem 1. Consider the Lyapunov´s
- Krasovsky functional,[2]:

V t( ) = x T t( ) Px (t ) + x T
− h

0

∫ t +τ( ) Sx t +τ( ) d τ                                     (A.1)

for the unforced system (2) for some real  positive
definite symmetric matrices P and S. Taking time-

derivatives in (A.1) along any state trajectory
yields:

V̇ t( ) = x T (t ) Q 0 x (t ) = x T (t ) Q x (t )                                                   (A.2)

with

x T(t ) = x T (t ) , x T (t −h ) , p 0
T (t ) , p 1

T (t −h )( )                                          (A.3)

and Q (∆ (θ) ) is defined by block matrices (5), and

Q 0 ∆ (θ )( ) = Q 0
T ∆ (θ)( ) = Block Matrix Q

0 i j ∆ (θ)( ) ; i, j = 1, 3[ ]            (A.4a)

and

Q 011 = A 0 0
T P + PA 00 + S   ; Q 012 = Q 0 2 1

T = PA 0 1

Q 013 = Q 031
T = Block Matrix P Bq 0 ∆ 0( ) , P Bq1 ∆ 1( )[ ] ; Q 022 = − S

Q 0 23 = Q 032
T = 0   ; Q 33 = 0

                                                                                                                            (A.4b)
Thus, the proof follows if Q 0 ∆(θ )( )   < 0, or

if Q (∆ (θ)) < 0 provided that furthermore

x T (t ) Q 0 − Q( ) x (t ) = 0 , for some

matrix functions G
∆ i ; H

∆ i ( i=0,1) of θ,

through ∆,  and all ∆ ∈∆  ( i.e. for all θ∈Θ ).

The constraint x T (t ) Q 0 − Q( ) x (t ) = 0

holds since from (4)

x T t −h i( ) G
∆ i p i t −h( )= x T t −h i( ) G

∆ i C pi x t −h i( )
+ x T t −h i( ) G

∆ i D pqi ∆ i( )p i t −h i( )

p i
T t −h i( ) H

∆ i p i t −h i( ) = p i
T t −h i( ) H

∆ i C pi x t −h i( )
+ p i

T t −h i( ) H
∆ i D pqi ∆ i( ) p i t −h i( )

                                                                                                                             (A.5)
for i =0, 1 with h 0 =0 what implies that

z i
T t( ) M i ∆ θ( )( ) z i (t )=0 for any

complex matrices G
∆ i ∆ θ( )( ) and

H
∆ i ∆ θ( )( ) , for i=0,1: of appropriate sizes

where

z i (t) = x T t −h i( ) ,p i
T t −h i( )( ) T for

i=0,1; and

M i ∆ (θ)( )
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      =
G ∆ iC pi +C pi

T G ∆ i
* G ∆i D pqi ∆ i( ) − G ∆ i +C pi

T H ∆i
*

Dpqi ∆ i( ) TG ∆i
* −G ∆ i

* + H ∆ i
* Cpi H ∆ i D pqi ∆ i( ) + D pqi ∆ i( ) T H ∆ i

* − H ∆i − H ∆ i
*

 

 

 
 

 

 

 
 

                                                                                                          for i=0,1    (A.6)

Thus, the result follows if Q (∆  (θ)) < 0 for some

design matrices G
∆ i ∆ (θ)( ) ∈C n ×d i ,

H
∆ i ∆ (θ)( ) ∈ Cd i ×d i  for each ∆ i θ( )∈ ∆ i

; i=0,1 as θ∈Θ . ❏

Proof of Corollary 1 . Note from (6) that

Q ∆ θ( )( ) = Q ' k 0 ,k 1( )  < 0 at the vertices

∆ 0
(k 0 )

and ∆ 1
(k 1 )

of the polytopes ∆ 0 and

∆ 1 ; for k 0 =1,v 0  ; k 1 =1,v 1  provided that

Q(∆(θ)) is defined for the choices

G
∆ i =C pi

T M i / 2 and

H
∆ i = D pqi ∆ i( ) T + I[ ] C pi

T M i /2 for

i = 0, 1. Furthermore, the matrix function Q(∆(θ))

is convex in ∆  ( θ ))  if M i = M ¡i
T > 0  ( i =

0, 1 ) so that Theorem 1 only needs to be tested at
the vertices of the  polytope ∆ = ∆ 0 × ∆ 1  . ❏

Proof of Corollary 2 . Since the LFR’ s
degrees s i i = 0,1( ) are unity, then the

following identity holds for convex hulls (denoted
by Co) of sets of matrices:

Co A i ∆ i
(k i )( ) ; k i =1, v i{ } = A i (∆ i ( θ)) : ∆ i ∈Co ∆ i

( k i ) ;k i =1, v i{ }{ }
for each i = 0, 1. Now, the proof is similar as that
of the Corollary 1 under the matrix replacements

M i → M i
( k i )

 for k i = 1, v i ; i =0, 1. ❏
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