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University of Maribor, Faculty of Organizational Sciences
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ABSTRACT

Periodicity of the solution of the 2-d discrete map of the anticipative cobweb has been studied in detail.
The periodic conditions of the model has been analytically determined by the application of z-transform.
Specification of the periodicity regions according to the standard characteristic equations has been stated.
The Farey tree sequence has been applied at the change of discrete map parameter. Initial linear 2-d
discrete map has been changed with the nonlinear rule. Gained periodicity conditions for initial map have
been considered in the nonlinear case. The periodicity conditions of the initial map have been preserved
in the nonlinear case.
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1. INTRODUCTION

Cobweb model has been extensively studied by the
researchers on account of its importance in the
field of the dynamics of complex systems. The
fact that the cobweb model originates from the
field of discrete dynamics is rather an advantage
since the systems of difference equations are often
easier to grasp. For example in his enduring schol-
arly value work on the studies of Dynamic Systems
Luenberger [10] on the first place addresses differ-
ence and later on differential equations. The clas-
sical knowledge about the cobweb model states,
that the Price and Quantity are related however,
the structure of the classical cobweb model can be
represented in the different way. By transforming
the cobweb model to SD form the model could be-
come non-autonomous depending on the variable
∆t. The following two equations represent the dif-

ferent formulation of the cobweb model:

Qs(k + 1) = c + d
Qs(k) − a

b
(1)

P (k + 1) =
c + dP (k) − a

b
(2)

This reformulation represents Qs and P as the
non-related quantities. The only bound that exists
are the coefficients.

The anticipative formulation of the cobweb equa-
tions are based on the fact, that P and Qs depend
only on the parameter values a, b, c, d and p i.e.
the initial conditions [1, 2, 3, 4]. System of cob-
web equations enables the determination of entire
anticipative (future event) chain while equation:

P (k − 1) =
bP (k) − c + a

d
(3)
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enables the determination of feedback (past event)
chain. The representation of the Feedback ∼ An-
ticipative chain is shown in Fig. 1. The dynamics
of interest is therefore the chains dynamics which
is dependant on the parameters a(t), b(t), c(t), d(t)
and p(t). Both chains are actually dependant on
strategy dynamics which could be formulated as
the f(a, b, c, d, p, t).

Application of hyperincursive algorithm and
inspection of gained equations with Dubois’ [1] for-
mulation of logistic growth yields the following set
of equations for the hyperincursive cobweb model:

P (k + 2) =
d

b

(
A −

(bB − c + a

d

))
(4)

Qs(k + 2) =
d

b

(
C − a − b

d

(
D − c

))
(5)

with initial conditions:

P0(k + 1) =
p − a

b
(6)

P0(k) =
bP0(k + 1) + a − c

d
(7)

Qs0(k + 1) = p (8)

Qs0(k) = a +
b

d
(Qs0(k + 1) − c) (9)

The coefficients A and B in Eq.4 could be re-
placed by the terms P (k + 1) or P (k) while coef-
ficients C and D in Eq.5 by Qs(k + 1) or Qs(k).
This yields 16 different combinations of system de-
fined by Eq.4 and Eq.5 that should be studied.
The system combination further examined will have
the following terms: A = P (k+1), B = P (k), C =
Qs(k + 1) and D = Qs(k). This yields the follow-
ing set of equations:

P (k + 2) =
d

b

(
P (k + 1) −

(bP (k) − c + a

d

))

Qs(k + 2) =
d

b

(
Qs(k + 1) − a − b

d

(
Qs(k) − c

))

This could be reformulated in order to show the
dependency of the future-present-past events:

P (k) =
bP (k − 1) + a − c

d
+

b

d
P (k + 1)

Qs(k) =
b

d
Qs(k + 1) +

b

d
Qs(k − 1) + a − bc

d

which states that the value of the present is de-
pendent on the past as well as on the future. This
paradoxical statement is realizable since the for-
mulation of feedback anticipative chain could be
stated. Fig. 1 has two delay chains, one for P
and one for Qs. One might notice, that the level
and rate elements are dependant only on the coef-
ficients and initialization values.

The developed model should enable us to ex-
amine the properties of the cobweb model and also
to consider it’s structural and incursive perspec-
tive. There are several approaches in modification
and analysis of cobweb dynamics [5, 6, 7, 8].

2. PERIODICITY OF THE SYSTEM

The z-transform is the basis of an effective method
for solution of linear constant-coefficient difference
equations. It essentially automates the process of
determining the coefficients of the various geomet-
ric sequences that comprise a solution [10]. The
application of z-transform on the Eq.10 and Eq.10
with initial conditions stated by Eqs. 6 ∼ 9 gives:

Y (z) =
−y1z + y0dz − y0z

2

−1 + dz − z2
(10)

Inverse z-transform yields the following solution:

Y −1(z) = 2−1−n y0

(
d −

√
−4 + d2

)n −

− y1 (d −√−4 + d2)
n

2n
√−4 + d2

+

+
2−1−n y0 d (d −√−4 + d2)

n

√−4 + d2
+

+ 2−1−n y0 (d +
√
−4 + d2)

n
+

+
y1 (d +

√−4 + d2)
n

2n
√−4 + d2

−

− 2−1−n y0 d (d +
√−4 + d2)

n

√−4 + d2
(11)
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Feedback chain Anticipative chain

Initial Conditions
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b(t) c(t) d(t) p(t)

Figure 1: Feedback ∼ Anticipative chain

In order to gain conditions for the periodic re-
sponse of the system the following equation should
be solved:

Y −1(z) = y0 (12)

Let us compute a numerical example of periodic
solution applying the z-transform. The period ex-
amined will be the period of 9 i.e. n = 9. In Eq.12
one should put the condition n = 9. One of the
possible solutions for the initial condition worth of
examination is the following:

d =
1(

1
2(−1 + i

√
3)
) 1

3

+
(1

2
(−1 + i

√
3)
) 1

3 (13)

The term (−1 + i
√

3)
1
3 (let us denote the term

as z∗) could be expressed in the following way by
three different imaginary values in polar form:

z∗1 = 3
√

2
(

cos
2π

9
+ i sin

2π

9

)
(14)

z∗2 = 3
√

2
(

cos
8π

9
+ i sin

8π

9

)
(15)

z∗3 = 3
√

2
(

cos
14π

9
+ i sin

14π

9

)
(16)

By putting Eq.14, Eq.15 and Eq.16 into Eq.13 and
performing trigonometric reduction one gets the
following solutions:

d1 = 2 cos
2π

9
d2 = 2 cos

4π

9
d3 = 2 cos

8π

9
(17)

By inspecting the Eq.13 and considering the
equation for the roots of complex numbers [9]:

n
√

z = n
√

r
(

cos
θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
(18)

the general form of the solution for the parameter
d could be assumed:

d = 2 cos
2πm

n
(19)

where n is the period and m = 1, 2, 3, ..., n − 1.
Similar procedure could be performed for the ar-
bitrary period n. More general solutions which
regards also the parameter b which was fixed for
the purpose of determination of solutions is:

d = 2b cos
2πm

n
(20)

Tab. 1 shows the solutions for the parameter d
up to the period n = 10. The periodic solutions
determine the shape of the polygon in 2-d map-
ping of solutions. Solutions geometry is important
at the examination of complex nonlinear dynam-
ical systems [12]. Numerical values of the solu-
tions for parameter d are important since this val-
ues also confirm the findings of Sonis [11] about
the domain of attraction for 2D dynamics by n-
dimensional linear bifurcation analysis. One of the
important conditions gained by the proposed in-
spection is the value of the period n = 10 which
is in close relation to the period n = 5. The value
of parameter d is d = 1

2(1 +
√

5) with numeri-
cal value 1.61803... This solution represents the
”Golden Ratio” (φ). Some of the different rep-
resentations of solution for parameter d value at
period n = 10 are:

d10 = φ = 2 cos
π

5
=

1
2
(1 +

√
5) = 1.618033... (21)

The first solution of parameter d at period n = 10
connects the considered discrete system with the
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Figure 2: Periodicity of the discrete 2d map — Classification of solutions according to the determinant

Fibonacci numbers given by the infinite series:

d10 = φ = 1 +
∞∑

u=1

(−1)u+1

FuFu+1
(22)

The fact, that the periodicity conditions of the ex-
amined discrete system incorporates the golden ra-
tio number φ could be observed in other studies [5]
of complex nonlinear expansions of the basically
cob-web systems e.g. Brock and Hommes ”Almost
Homoclinic Tangency Lemma”. One should ex-
pect that the symmetric response in n−mapping
should follow the pattern with the match in certain
point of solution with the φ condition. The source
of the mentioned condition is presented by the pre-
ceding procedure. (The value of parameter d for
mentioned period n = 5 is d =

√
5−1
2 = 0.61803...

often called the ”Golden Mean”.)

3. SYNCHRONIZATION PATTERNS

In order to derive the stability results on our two-
dimensional discrete map,{

P1k+1
= f(P1k

, P0k
)

P0k+1
= g(P1k

, P0k
)

(23)

where P1k
and P0k

represent the components of
the iteration process at time k the Jacobian ma-
trix J should be evaluated at assumed equilibrium

points:

J =

(
∂f(P ∗

1 ,P ∗
0 )

∂P1

∂f(P ∗
1 ,P ∗

0 )
∂P0

∂g(P ∗
1 ,P ∗

0 )
∂P1

∂g(P ∗
1 ,P ∗

0 )
∂P0

)
(24)

The range of the cyclical behavior is deter-
mined by the classical imaginary solution of the
dynamical system which is in our case defined by

Table 1: Synchronization parameter d values of
periodicity conditions up to period 10

Period Argument Num. value
n Ω = 2π m

n d = 2 cos 2πm
n

2∗ π −2.00000
3 2π

3 −1.00000
4∗∗ π

2 0.00000
5 2π

5 0.61803
4π
5 −1.61803

6 π
3 1.00000

7 2π
7 1.24698
4π
7 −0.44504
6π
7 −1.80194

8 π
4 1.41421
3π
4 −1.41421

9 2π
9 1.53209
4π
9 0.34730
8π
9 −1.87939

10 π
5 1.61803
3π
5 −0.61803
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Figure 3: Emergence of Four Synchronous Attractors in the nonlinear case where d = 0.26131278 and
b1 = 0.33

the characteristic equation

λ =
−2b + d ±√−4b2 + d2

2b
(25)

Stability result corresponds to the polynomial λ2 =
trJλ − detJ where periodic solutions will be con-
sidered. One should consider e.g. [11] for de-
tails. Discrete map stated by Eq.23 should be an-
alyzed according to the variation of parameter d
and the determinant ∆ = p2 − 4q. According to
the Tab. 1 gained by the z-transform the follow-
ing classification of the periodic solution could be
drawn, shown in Fig. 2. One of the questions
that arose at the analysis of similar 2d systems is
the question about the rule that determines the
periodicity. In our case the change of parameter
d causes the system to switch between different
equilibriums. The ordering of the equilibriums is
determined by the general Eq. 20. The rational
fraction m

n , which is in our case transformed by
the Eq. 20 to the value of the parameter d, corre-
sponds to the Farey sequence which could be rep-
resented by the Farey tree. Fig. 2 represents the
classification of the periodicity values. Aperiodic
region is determined by the condition ∆ > 0 and
the periodicity by the ∆ < 0. The vertical clas-

sification at d < 0 determines the angles which
are determined by the three points in the 2-d map
in our case, αn < π

2 ; d > 0, the angles of the
map are αn > π

2 . The strongest periodicity points
are determined by the polygon structures in 2-d
mapping. In the Fig. 2 the polygons are marked
near the hyperbola starting with digon, triangle
etc. Other periodicity is the subset of the main
sections which is determined by the

∑
αn and the

Farey tree. The emergence of the system periodic
stability in the shape of n-sided polygon could be
observed not only in economical systems [15]; the
n-sided polygon and the Farey tree organization
of the equilibria could be observed in the techni-
cal systems as for example in laser control as the
paradigm of the chaotic system [17].

3.1. Bifurcation Analysis - Extension to Non-
linear systems

Periodicity conditions in previous section are gen-
eral and could be transferred from linear systems
to nonlinear, see for example [11, 13]. In order
to analyze the pseudo-bifurcation response of the
initial 2-d discrete map the bifurcation was per-
formed for the change in parameter d in the range
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Figure 4: Preservation of Four Synchronous Attractors in the nonlinear case where d = 0.26151152 and
b1 = 0.33

d ∈ [−2, 2] which covers the whole periodicity area
of the studied model. In such case the strong peri-
odicity points are indicated and correspond to the
Farey tree sequence of polygons. The periodicity
response is manifested as the sequence of mayor
gaps in the bifurcation with the pole at the origin
of X-axis. The analysis performed so far leads to
the following proposition:

Proposition 3.1 Periodicity conditions in the lin-
ear 2-d map of the cobweb anticipative system ex-
ists in the nonlinear expansion of the system.

Let us consider the following two expansions
of the model (several other expansions could also
be applied, see for example [6, 8]; let us define the
adaptive nonlinear multiplicator rule R as:

R =

⎧⎪⎨
⎪⎩

Pk+1−Pk

Pk
if −1 <

Pk+1−Pk

Pk
< 1

1 if Pk+1−Pk

Pk
≥ 1

−1 if Pk+1−Pk

Pk
≤ −1

(26)

Since the nonlinear rule has been applied the char-
acteristic nonlinear bifurcation diagram evolves.
The response of the system at the period p = 6
as one of the polygon rules which should provide

the periodicity of the considered system has been
preserved in such altered system. The beginning
of bifurcation in corresponds to the value of pa-
rameter d = 1 which has been indicated in the
analysis of the initial 2-d discrete map. Period six
is followed by the p = 7 and p = 8. The under-
lying Farey sequence define the adapted nonlinear
2-d discrete map. Such evidences are also find in
other works in nonlinear system analysis for ex-
ample [5] or in the recent works of dr. T. Puu
[15, 14].

Consider another generic alteration of the ini-
tial anticipative cobweb model:

PK(k + 1) = PK + PKP1(k) −
−

(
PK(k) +

1
PZ(k)PK(k)

)
PKP1(k + 1) = PKP2(k)

PKP2(k + 1) =
d

b

(
PKP1 − bPK(k) − c + a

d

)
PZ(k + 1) = PZ(k) + PK(k)PKP1(k) −

− vPZ(k) (27)

Slight modification of initial Hicks’ model [16] gives
the interesting response. The system can be rep-
resented in three dimensions which reveals the pe-
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riodicity of the system for which the previously
determined conditions of Farey tree generally still
holds. Fig. 3 shows the 3d bifurcation diagram
for the altered model. One can see the four attrac-
tors which are simultaneous and represent the four
possible equilibrium states for the trade dynamics.
The 4-cycle characteristic is preserved at the alter-
ation of the parameter v which could be observed
in the Fig. 4. The four dots on the center-right
side of the figure represents the four-cycle charac-
teristic of the response. The larger orbits indicate
the steep change in the modus of the system.

4. CONCLUSION

The solution of the periodicity conditions for the
2-d discrete linear cobweb map provided the means
to determine the periodicity conditions. Analyti-
cal approach with z-transformation is an adequate
proposition for determination of the periodic solu-
tions. The emergence of Farey tree as the rational
fraction representation yields the organisation of
the periodicity solutions. The developed model
shows that by the statement of general rule of
the system the synchronization of entire feedback-
anticipative chain could be gained by setting the
appropriate strategy in the form of parameters
value set which should be time dependant. The bi-
furcation experiment with the nonlinear mapping
provided the example of periodicity transposition
to the systems of higher complexities.
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