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Abstract: - This contribution deals with the application of parallel processing techniques based on 
Parallel Processing Machine (PVM) and Multithreading to the Driving Point Impedances (DPI) of 
Electric Power Systems. It is demonstrated that the application of parallel processing techniques 
dramatically reduces the intensive computation effort required for the determination of the power 
system response represented by driving point impedances. 
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1   Introduction 
 
In general, an intensive computation effort is required 
to reproduce the system response for a practical range 
of frequencies for useful transient and harmonic 
analysis. The frequency step used is directly 
proportional to the accuracy obtained. For practical 
applications, this information is further processed so 
that the system response obtained with the driving 
point impedance is adequately reproduced at 
resonance frequencies by a frequency dependent 
equivalent, e.g. [1-3].  
 
In this contribution two parallel processing platforms 
based on Multithreads [4] and PVM [5] are applied to 
the efficient computation of the system frequency 
response. It is shown that as the complexity of the 
system increases, the application of parallel 
processing significantly reduces the computational 
effort required by a conventional sequential process 
to obtain the network frequency response. This is 
achieved by increasing the process relative efficiency 
of the parallel processing. 
 
 
2   Driving Point Impedance 
 
The power network frequency response can be 
obtained by assembling, at any particular frequency, 
its respective admittance or impedance matrix from 
the individual system components. The transfer 
function between nodal currents and voltages 
appearing throughout the system busbars is 
represented, for any frequency f, by the matrix 
equation,  

 
 
 
 f f fI Y V=      (1) 
 
The inverse of the frequency admittance matrix fZ  is 
the frequency impedance matrix fZ , where each 
diagonal element ,j jZ  is known as driving point 
impedance of node j. 
 
The combination of inductive and capacitive 
elements as seen from a particular bus, can result in 
either series resonance or a parallel resonance. The 
result of a series resonance may be the presence of 
unexpected large amounts of harmonic currents 
flowing through certain network elements, whereas 
the result of parallel resonance may be the presence 
of excessive harmonic voltages across network 
elements [6][7]. 
 
 
3   Parallel Processing Techniques 
 
Parallel processing can be defined as a form of 
information processing where two or more processors 
in combination with some form of inter-processor 
communication system, cooperate on the concurrent 
solution of a large problem [8]. The emergence of 
massive parallel processors and distributed 
computation have paved the way to the wide 
acceptance and application of parallel processing for 
the solution of problems of considerable magnitude in 
diverse fields. 
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3.1 Parallel Virtual Machine 
 
PVM (Parallel Virtual Machine) [5] is a platform that 
allows an heterogeneous network computer set to 
work as a large computer of multiple processors. 
Thus, a low cost and powerful virtual computer of 
multiple supercomputers can be created. PVM has 
several important advantages, e.g. 
 
• Easy to set up. 
• Many virtual machines can co-exist with the 

same hardware. 
• The development of programs is based on 

message passing libraries. 
• Supports C and Fortran. 
• The software is very portable. 
• The code source is available for free. 
• PVM enables users to exploit their existing 

computer hardware to solve much larger 
problems with minimal additional cost. 

 
It supports operating platforms such as Windows or 
LINUX. In PVM the information is transferred by 
mean a zip-send-reception-unzip protocol. This 
protocol is based on message passing libraries. 
 
3.2 Multithreading 
 
Multithreading [4] is the application of lightweight 
subprocesses executed within a process sharing code 
and data segments, but with their own program 
counter, machine registers and stack. Global and 
static variables are common to all threads. 
 
4   Parallel DPI calculation Scheme 
Proposed 
 
Conventionally, the computation of  fZ  is carried-out 
by means of a sequential process where ,j jZ  is 
obtained at each frequency. An accurate computation 
of  ,j jZ  requires a small enough frequency step size to 
be used, so that parallel and series systems 
resonances are appropriately reproduced. However, 
the frequency step size is inversely proportional to 
the computational effort needed to obtain ,j jZ  over 
the entire frequency range of analysis. However, the 
computation of fZ , for 0 1 2, , , nf f f f f=  can take 
advantage from the fact that  0fZ  is independent from 

1fZ , which in turn is independent from 2fZ , etc. The 
above process independence makes ideal the 
application of parallel processing, since concurrent 
processes are used for the computation of fZ  over the 

frequency range of interest. Figure 1 illustrates the 
parallel scheme proposed for the computation of fZ . 
Here, a main process element collects all the 
information related to the electric network such as 
topology, elements and involved electric variables 
and parameters. This information is stored in a linked 
list from a defined class, who contains the relevant 
information associated with each individual element. 
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Figure 1.  Proposed parallel scheme 

 
Once the electric network information has been 
collected, the main process element determines the 
frequency range assigned to each thread for the 
computation of the system frequency behavior, e.g.  
 

No. of frequencies
Frequency stepTask by process element = 

No. of process elements
 (2) 

 
If the frequency number is larger than the number of 
process elements in (2), then each process element 
computes more than one inverse of . However, if 
the number of threads is equal to the number of 
frequencies, then each element process calculates one 
inverse of 

fY

fY . On the other hand, if the number of 
element process is larger than the number 
frequencies, then the additional threads are not used. 
Once the number of tasks to be carried-out by every 
process element is defined, the main element process 
sends a starting signal to the different threads 
involved in the process in the case of multithreads or 
executed every slave process in the case of PVM. 
Figure 2 illustrates the task assignment to process 
elements. Here, each process element builds-up the 
admittance matrix for a frequency f with the data 
stored in the linked list. Once the matrix has been 
assembled, the process element computes the inverse. 
The elements from the inverse are sent to the shared 
memory to be stored in a common variable in the 
case of Multithreads or are sent to the master 
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processor (in the case of PVM) to be stored in a 
common variable. This variable is protected against 
overwriting using the mutual exclusivity mechanism, 
which prevents simultaneous information access from 
multiple process elements.  
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Figure 2.  Task assignment to process elements 

 
The process to calculate the inverse of fY  is based on 
a LU bifactorization process, a forward and backward 
process and the use of sparse matrices. The inverse of   

fY  is build up by columns by mean a forward – 
backward substitution process. For each column of  

fY  a forward – backward substitution process is 
needed, where vector b contains zero elements, with 
1 in the position associated with the column to be 
calculated. Figure 3 illustrates the inverse process. 
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Figure 3.  Inverse process of fY  

Every single process element builds-up the fY   matrix 
using the relevant information of the stored circuit in 
a linked list of structures, which contains information 
on the reception and sending nodes, the resistance, 
inductance and capacitance values and finally a 
number representing the element arrangement. This 
number is used to build-up the impedance value on 
function of the resistor, capacitor and inductance 
arrangement. Figure 4 illustrates the storage scheme 
used in this investigation. This scheme consists on an 
arrangement of pointers to a basic storage structure 
which contains three elements; an integer variable 
that represents the receiving node, a complex variable 
that stores the admittance value and a pointer to this 
structure. This pointer is used to link the different 
elements connected to a specific busbar. Based on the 
storage scheme each thread builds-up the fY  at the 
different frequencies assigned.  
 
The process of bifactorization is based on a LU 
procedure, where, a matrix is converted into the 
product of two matrices, a lower and an upper matrix 
respectively, e.g. 
 
 fY LU=      (3) 
 
where the elements of the matrices L and U are 
calculated with (4) and (5) respectively. 
 
                        ij ij ik kj

k j
l a l u i

<

j= − ≥∑   (4) 

 
 

                   
ij ik kj

k i
ij

ii

a l u
u i

l
<

⎛ ⎞−⎜ ⎟
⎝ ⎠ j= <

∑
   (5) 

 
Once the matrix is bifactorizated, a forward – 
backward substitution of (6) and (7) is used to obtain, 
by columns, the elements of the matrix inverse of fY . 
During this process a zero-valued   vector is used, 
except for a 1 in the position of the column to be 
obtained. 
 
 

0

n

i i ij
j

Y b l Y
=

= + j∑   forward substitution  (6) 

 
 

1n

i ii i ij j
j i

X l Y r X
−

=

= +∑   backward substitution (7) 
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Figure 4.    Storage scheme using linked lists 

 
Before starting the bifactorization process an ordering 
scheme is used to generate the minimum number of 
non-zero elements. 
 
5   Test Case 
 
Figure 5 illustrates the test case to be analyzed. It 
contains five nodes, seven transmission lines, two 
generation units, represented by voltage injections of 
1.0 p.u. The test system data are r1=r2=r3=r4 
=r5=r6=10mΩ, l1=l2=l3=l4=l5=l6=20mH for the 
transmission lines, r7=20mΩ, l7=2mH, C1=200µF, 
l8=l9=0.69mH, C2=C3=300µF, l10=11.3mH and 
C4=100µF.  
 
The programming code was developed in C++ with 
multithreading [4]. For the case with PVM, the 
PVM3 library [10] was used. Two processors 
794.675 Mhz computer was used to executed the 
code associated with multithreads. The operative 
system used was Linux Ubuntu. The developed code 
reads a data file containing the system configuration 
and their parameters, the simulation data such as 
number of nodes, branches, harmonics, frequency 
step and the number of threads to be used in the 
simulation. The parallel virtual machine used in this 
investigation was build using 3 two processors 
794.675 Mhz computers. 
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Figure 5.   Test case 

Appendix I illustrates the models used for 
representation of the synchronous machine and the 
transformer [6]. GNUPLOT [9] was used for the 
graphical representation of the driving point 
impedance.  
 
For the case with PVM, the PVM3 library [5] was 
used whereas for the Multithreading case the 
PTHREAD library was applied [10]. The mutual 
exclusivity mechanism is applied to appropriately 
control the access from multiple threads [10][11]. 
 
Figure 6 illustrates the impedance system seen from 
node 2. It can be noticed that there are four points of 
parallel resonance, e.g. at 120, 180, 230 and 360 hz 
respectively. 
 
 

FrequencyFrequency  
Figure 6. System frequency response, as seen from node 2 
 
Figure 7 illustrates the system frequency response, 
represented by the DPI, given as the impedance 
magnitude versus frequency, as seen from node 4. 
Two parallel resonances take place at 120 and 350 
Hz, respectively. A 0.1 Hz frequency step size was 
used with a 60 Hz base frequency. 
 

FrequencyFrequency  
Figure 7. System frequency response, as seen from node 4 
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Figure 8 illustrates the effect of the frequency step in 
the driving point calculation. It can be observed that 
frequency steps of 1.0fund (fund = fundamental) and 
0.5fund do not identify the parallel resonances 
associated with the analyzed electric power system, 
whereas the use of 0.1fund and 0.01fund identify all 
resonances points associated with the electric power 
systems analyzed. 
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Figure 8. Effect of the frequency step in the DPI 

evaluation 
 

The parallel processing relative efficiency is 
computed as [12], 
 

1
relative

P

TE
T

=       (8) 

 
where, 
 

1T  execution time with 1 process element. 

pT  execution time with p process elements. 
 
Tables 1-2 illustrate the relative efficiency achieved 
with the application of parallel processing based on 
multithreading to the computation of the frequency 
system response using two different frequency steps. 
 
With ∆f = ffund (=60 Hz) no improvement is obtained 
in the relative efficiency for the DPI computation, 
since it remains in 1.0. With ∆f = 0.1ffund the relative 
efficiency increases from 1.0 to 1.2727 with ten 
harmonics (times the fundamental frequency) and to 
1.5238 with forty harmonics, see Table I. For ∆f = 
0.01ffund the relative efficiency increases from 1.0 to 
1.7631 with ten harmonics and to 1.9140 with forty 
harmonics, see Table II. The application of a third 
thread does not increase the relative efficiency, since 
for this investigation a two processors computer was 
used. The relative efficiency increases in direct 
proportion to the size of the problem to be solved and 

the number of threads and processors used, as seen 
from Tables 1-2. 

 
Table 1. Relative Efficiency with ∆f=0.1fund 

Number of harmonics Number of  
threads 10 20 30 40 

1 1.0000 1.0000 1.0000 1.0000 

2 1.2727 1.4285 1.5294 1.5238 

3 1.2727 1.2500 1.3000 1.3333 

 
Table 2. Relative Efficiency with ∆f=0.01fund 

Number of harmonics Number 
of threads 10 20 30 40 

1 1.0000 1.0000 1.0000 1.0000 
2 1.7631 1.8529 1.8979 1.9140 
3 1.7631 1.8260 1.8979 1.8992 

 
Table 3 illustrates the relative efficiency obtained 
with the use of 1-3 slave processors. It can be noted 
that relative efficiency increases with the increase of 
slave processors and frequency step used. The 
maximum relative efficiency obtained is 2.97 for a 
∆f=0.001 and with the use of 3 slave processors. 
 

Table 3. Relative Efficiency obtained with PVM and 3 
slave processors 

Relative Efficiency 
Frequency Step 

Numper of 
slave 

processors 1.0 0.1 0.01 0.001 
1 1.0000 1.0000 1.0000 1.0000 
2 1.0556 1.1842 1.4474 1.9916 
3 1.0000 1.5000 2.1154 2.9720 

 
6   Conclusions 
 
This contribution has introduced the application of 
parallel processing based on multithreading, to the 
fast calculation of driving point impedances in 
electric networks.  
 
In particular, this investigation has demonstrated that 
the application of parallel processing techniques 
significantly increases the relative efficiency for the 
computation of the frequency dependent system 
response in the form of driving point impedances, as 
seen by any system busbar. The efficiency will 
increase in direct proportion with the system 
dimension, the size of problem and the number of 
process elements used. 
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Appendix I 
 
Power System Component Models 
 
Synchronous Machine 
 

"
generator dZ r h jX h= +  

 
where 
 

"
dX  generator subtransient reactance. 

r  resistence 
h  harmonic order 

 
 
Transformer 
 
 "

generator dZ r h jX h= +  
 
where 
 

tX   transformer short circuit reactance. 
   resistence r

h   harmonic order 
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