
Driving Point Impedance Computation Applying Parallel Processing
Techniques

A. MEDINA, A. RAMOS-PAZ

Facultad de Ingeniería Eléctrica, División de Estudios de Posgrado
Universidad Michoacana de San Nicolás de Hidalgo

Edificio de la División del Posgrado de Ingeniería Eléctrica, Ciudad Universitaria, 58030
Morelia, Michoacán, MEXICO

Abstract: - This contribution deals with the application of parallel processing techniques based on
Parallel Processing Machine (PVM) and Multithreading to the Driving Point Impedances (DPI) of
Electric Power Systems. It is demonstrated that the application of parallel processing techniques
dramatically reduces the intensive computation effort required for the determination of the power
system response represented by driving point impedances.

Key-Words: - Driving Point Impedance, Parallel Processing, Parallel Virtual Machine (PVM), Multithreading.

1 Introduction

In general, an intensive computation effort is required
to reproduce the system response for a practical range
of frequencies for useful transient and harmonic
analysis. The frequency step used is directly
proportional to the accuracy obtained. For practical
applications, this information is further processed so
that the system response obtained with the driving
point impedance is adequately reproduced at
resonance frequencies by a frequency dependent
equivalent, e.g. [1-3].

In this contribution two parallel processing platforms
based on Multithreads [4] and PVM [5] are applied to
the efficient computation of the system frequency
response. It is shown that as the complexity of the
system increases, the application of parallel
processing significantly reduces the computational
effort required by a conventional sequential process
to obtain the network frequency response. This is
achieved by increasing the process relative efficiency
of the parallel processing.

2 Driving Point Impedance

The power network frequency response can be
obtained by assembling, at any particular frequency,
its respective admittance or impedance matrix from
the individual system components. The transfer
function between nodal currents and voltages
appearing throughout the system busbars is
represented, for any frequency f, by the matrix
equation,

 f f fI Y V= (1)

The inverse of the frequency admittance matrix fZ is
the frequency impedance matrix fZ , where each
diagonal element ,j jZ is known as driving point
impedance of node j.

The combination of inductive and capacitive
elements as seen from a particular bus, can result in
either series resonance or a parallel resonance. The
result of a series resonance may be the presence of
unexpected large amounts of harmonic currents
flowing through certain network elements, whereas
the result of parallel resonance may be the presence
of excessive harmonic voltages across network
elements [6][7].

3 Parallel Processing Techniques

Parallel processing can be defined as a form of
information processing where two or more processors
in combination with some form of inter-processor
communication system, cooperate on the concurrent
solution of a large problem [8]. The emergence of
massive parallel processors and distributed
computation have paved the way to the wide
acceptance and application of parallel processing for
the solution of problems of considerable magnitude in
diverse fields.

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp229-234)

3.1 Parallel Virtual Machine

PVM (Parallel Virtual Machine) [5] is a platform that
allows an heterogeneous network computer set to
work as a large computer of multiple processors.
Thus, a low cost and powerful virtual computer of
multiple supercomputers can be created. PVM has
several important advantages, e.g.

• Easy to set up.
• Many virtual machines can co-exist with the

same hardware.
• The development of programs is based on

message passing libraries.
• Supports C and Fortran.
• The software is very portable.
• The code source is available for free.
• PVM enables users to exploit their existing

computer hardware to solve much larger
problems with minimal additional cost.

It supports operating platforms such as Windows or
LINUX. In PVM the information is transferred by
mean a zip-send-reception-unzip protocol. This
protocol is based on message passing libraries.

3.2 Multithreading

Multithreading [4] is the application of lightweight
subprocesses executed within a process sharing code
and data segments, but with their own program
counter, machine registers and stack. Global and
static variables are common to all threads.

4 Parallel DPI calculation Scheme
Proposed

Conventionally, the computation of fZ is carried-out
by means of a sequential process where ,j jZ is
obtained at each frequency. An accurate computation
of ,j jZ requires a small enough frequency step size to
be used, so that parallel and series systems
resonances are appropriately reproduced. However,
the frequency step size is inversely proportional to
the computational effort needed to obtain ,j jZ over
the entire frequency range of analysis. However, the
computation of fZ , for 0 1 2, , , nf f f f f= can take
advantage from the fact that 0fZ is independent from

1fZ , which in turn is independent from 2fZ , etc. The
above process independence makes ideal the
application of parallel processing, since concurrent
processes are used for the computation of fZ over the

frequency range of interest. Figure 1 illustrates the
parallel scheme proposed for the computation of fZ .
Here, a main process element collects all the
information related to the electric network such as
topology, elements and involved electric variables
and parameters. This information is stored in a linked
list from a defined class, who contains the relevant
information associated with each individual element.

Start

Data Collection

Tasking
distribution

End

Main Process

ThreadsZf0 Zf1 Zf2 Zfn

Start

Data Collection

Tasking
distribution

End

Main Process

ThreadsZf0 Zf1 Zf2 Zfn
Process
elements

Start

Data Collection

Tasking
distribution

End

Main Process

ThreadsZf0 Zf1 Zf2 Zfn

Start

Data Collection

Tasking
distribution

End

Main Process

ThreadsZf0 Zf1 Zf2 Zfn
Process
elements

Figure 1. Proposed parallel scheme

Once the electric network information has been
collected, the main process element determines the
frequency range assigned to each thread for the
computation of the system frequency behavior, e.g.

No. of frequencies
Frequency stepTask by process element =

No. of process elements
 (2)

If the frequency number is larger than the number of
process elements in (2), then each process element
computes more than one inverse of . However, if
the number of threads is equal to the number of
frequencies, then each element process calculates one
inverse of

fY

fY . On the other hand, if the number of
element process is larger than the number
frequencies, then the additional threads are not used.
Once the number of tasks to be carried-out by every
process element is defined, the main element process
sends a starting signal to the different threads
involved in the process in the case of multithreads or
executed every slave process in the case of PVM.
Figure 2 illustrates the task assignment to process
elements. Here, each process element builds-up the
admittance matrix for a frequency f with the data
stored in the linked list. Once the matrix has been
assembled, the process element computes the inverse.
The elements from the inverse are sent to the shared
memory to be stored in a common variable in the
case of Multithreads or are sent to the master

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp229-234)

processor (in the case of PVM) to be stored in a
common variable. This variable is protected against
overwriting using the mutual exclusivity mechanism,
which prevents simultaneous information access from
multiple process elements.

Start

Gets finitial , ffinal

Builds-up Yf

Calculates Yf
-1

Stores results in a
common variable

f = f + ∆f

f = finitial

f = ffinal End

Start

Gets finitial , ffinal

Builds-up Yf

Calculates Yf
-1

Stores results in a
common variable

f = f + ∆f

f = finitial

f = ffinal End

Figure 2. Task assignment to process elements

The process to calculate the inverse of fY is based on
a LU bifactorization process, a forward and backward
process and the use of sparse matrices. The inverse of

fY is build up by columns by mean a forward –
backward substitution process. For each column of

fY a forward – backward substitution process is
needed, where vector b contains zero elements, with
1 in the position associated with the column to be
calculated. Figure 3 illustrates the inverse process.

i = n

i++

Start

i = 0

Vector b
generation

Set bi = 1

forward and backward
substitutions

Endi = n

i++

Start

i = 0

Vector b
generation

Set bi = 1

forward and backward
substitutions

End

Figure 3. Inverse process of fY

Every single process element builds-up the fY matrix
using the relevant information of the stored circuit in
a linked list of structures, which contains information
on the reception and sending nodes, the resistance,
inductance and capacitance values and finally a
number representing the element arrangement. This
number is used to build-up the impedance value on
function of the resistor, capacitor and inductance
arrangement. Figure 4 illustrates the storage scheme
used in this investigation. This scheme consists on an
arrangement of pointers to a basic storage structure
which contains three elements; an integer variable
that represents the receiving node, a complex variable
that stores the admittance value and a pointer to this
structure. This pointer is used to link the different
elements connected to a specific busbar. Based on the
storage scheme each thread builds-up the fY at the
different frequencies assigned.

The process of bifactorization is based on a LU
procedure, where, a matrix is converted into the
product of two matrices, a lower and an upper matrix
respectively, e.g.

 fY LU= (3)

where the elements of the matrices L and U are
calculated with (4) and (5) respectively.

 ij ij ik kj

k j
l a l u i

<

j= − ≥∑ (4)

ij ik kj

k i
ij

ii

a l u
u i

l
<

⎛ ⎞−⎜ ⎟
⎝ ⎠ j= <

∑
 (5)

Once the matrix is bifactorizated, a forward –
backward substitution of (6) and (7) is used to obtain,
by columns, the elements of the matrix inverse of fY .
During this process a zero-valued vector is used,
except for a 1 in the position of the column to be
obtained.

0

n

i i ij
j

Y b l Y
=

= + j∑ forward substitution (6)

1n

i ii i ij j
j i

X l Y r X
−

=

= +∑ backward substitution (7)

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp229-234)

List representing row 1

List representing row 2

Pointers vector to the linked lists

List representing row 0

List representing row n-1

List representing row 1

List representing row 2

Pointers vector to the linked lists

List representing row 0

List representing row n-1

Figure 4. Storage scheme using linked lists

Before starting the bifactorization process an ordering
scheme is used to generate the minimum number of
non-zero elements.

5 Test Case

Figure 5 illustrates the test case to be analyzed. It
contains five nodes, seven transmission lines, two
generation units, represented by voltage injections of
1.0 p.u. The test system data are r1=r2=r3=r4
=r5=r6=10mΩ, l1=l2=l3=l4=l5=l6=20mH for the
transmission lines, r7=20mΩ, l7=2mH, C1=200µF,
l8=l9=0.69mH, C2=C3=300µF, l10=11.3mH and
C4=100µF.

The programming code was developed in C++ with
multithreading [4]. For the case with PVM, the
PVM3 library [10] was used. Two processors
794.675 Mhz computer was used to executed the
code associated with multithreads. The operative
system used was Linux Ubuntu. The developed code
reads a data file containing the system configuration
and their parameters, the simulation data such as
number of nodes, branches, harmonics, frequency
step and the number of threads to be used in the
simulation. The parallel virtual machine used in this
investigation was build using 3 two processors
794.675 Mhz computers.

1 3 4

2

1 3 4

5

2

r6

r1

r2
r3

r5

r7

r4

l4

l10

C3 l9

l3

l8

l1

l2
l6

l5

l7

C1

C2

C4

1 3 4

2

1 3 4

5

2

r6

r1

r2
r3

r5

r7

r4

l4

l10

C3 l9

l3

l8

l1

l2
l6

l5

l7

C1

C2

C4

Figure 5. Test case

Appendix I illustrates the models used for
representation of the synchronous machine and the
transformer [6]. GNUPLOT [9] was used for the
graphical representation of the driving point
impedance.

For the case with PVM, the PVM3 library [5] was
used whereas for the Multithreading case the
PTHREAD library was applied [10]. The mutual
exclusivity mechanism is applied to appropriately
control the access from multiple threads [10][11].

Figure 6 illustrates the impedance system seen from
node 2. It can be noticed that there are four points of
parallel resonance, e.g. at 120, 180, 230 and 360 hz
respectively.

FrequencyFrequency
Figure 6. System frequency response, as seen from node 2

Figure 7 illustrates the system frequency response,
represented by the DPI, given as the impedance
magnitude versus frequency, as seen from node 4.
Two parallel resonances take place at 120 and 350
Hz, respectively. A 0.1 Hz frequency step size was
used with a 60 Hz base frequency.

FrequencyFrequency
Figure 7. System frequency response, as seen from node 4

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp229-234)

Figure 8 illustrates the effect of the frequency step in
the driving point calculation. It can be observed that
frequency steps of 1.0fund (fund = fundamental) and
0.5fund do not identify the parallel resonances
associated with the analyzed electric power system,
whereas the use of 0.1fund and 0.01fund identify all
resonances points associated with the electric power
systems analyzed.

100 150 200 250 300 350
0

100

200

300

400

500

600

Harmonic Order

Im
pe

da
nc

e
M

ag
ni

tu
d

(O
hm

s)

Frequency
100 150 200 250 300 350

0

100

200

300

400

500

600

Harmonic Order

Im
pe

da
nc

e
M

ag
ni

tu
d

(O
hm

s)

Frequency
Figure 8. Effect of the frequency step in the DPI

evaluation

The parallel processing relative efficiency is
computed as [12],

1
relative

P

TE
T

= (8)

where,

1T execution time with 1 process element.

pT execution time with p process elements.

Tables 1-2 illustrate the relative efficiency achieved
with the application of parallel processing based on
multithreading to the computation of the frequency
system response using two different frequency steps.

With ∆f = ffund (=60 Hz) no improvement is obtained
in the relative efficiency for the DPI computation,
since it remains in 1.0. With ∆f = 0.1ffund the relative
efficiency increases from 1.0 to 1.2727 with ten
harmonics (times the fundamental frequency) and to
1.5238 with forty harmonics, see Table I. For ∆f =
0.01ffund the relative efficiency increases from 1.0 to
1.7631 with ten harmonics and to 1.9140 with forty
harmonics, see Table II. The application of a third
thread does not increase the relative efficiency, since
for this investigation a two processors computer was
used. The relative efficiency increases in direct
proportion to the size of the problem to be solved and

the number of threads and processors used, as seen
from Tables 1-2.

Table 1. Relative Efficiency with ∆f=0.1fund

Number of harmonics Number of
threads 10 20 30 40

1 1.0000 1.0000 1.0000 1.0000

2 1.2727 1.4285 1.5294 1.5238

3 1.2727 1.2500 1.3000 1.3333

Table 2. Relative Efficiency with ∆f=0.01fund

Number of harmonics Number
of threads 10 20 30 40

1 1.0000 1.0000 1.0000 1.0000
2 1.7631 1.8529 1.8979 1.9140
3 1.7631 1.8260 1.8979 1.8992

Table 3 illustrates the relative efficiency obtained
with the use of 1-3 slave processors. It can be noted
that relative efficiency increases with the increase of
slave processors and frequency step used. The
maximum relative efficiency obtained is 2.97 for a
∆f=0.001 and with the use of 3 slave processors.

Table 3. Relative Efficiency obtained with PVM and 3
slave processors

Relative Efficiency
Frequency Step

Numper of
slave

processors 1.0 0.1 0.01 0.001
1 1.0000 1.0000 1.0000 1.0000
2 1.0556 1.1842 1.4474 1.9916
3 1.0000 1.5000 2.1154 2.9720

6 Conclusions

This contribution has introduced the application of
parallel processing based on multithreading, to the
fast calculation of driving point impedances in
electric networks.

In particular, this investigation has demonstrated that
the application of parallel processing techniques
significantly increases the relative efficiency for the
computation of the frequency dependent system
response in the form of driving point impedances, as
seen by any system busbar. The efficiency will
increase in direct proportion with the system
dimension, the size of problem and the number of
process elements used.

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp229-234)

Acknowledgements

The authors acknowledge the Universidad
Michoacana de San Nicolás de Hidalgo (UMSNH)
through the División de Estudios de Posgrado of the
Facultad de Ingeniería Eléctrica the facilities granted
to carry-out this investigation. A. Ramos-Paz
acknowledges financial support received by the
UMSNH and CONACYT to carry-out his Doctoral
studies.

References:

[1] N.R. Watson, and J. Arrillaga, “Frequency-
Dependent System Equivalents for Harmonic Studies
and Transient Convertor Simulation”, IEEE Trans.on
Power Delivery, Vol. 3, No.3, pp. 1196-1203, July
1987.
[2] A. Medina, J. Arrillaga, and N.R.
Watson,“Detivation of Multi-Harmonic Equivalent
Models of
Power Networks”, Fourth International Conference
on Harmonics in Power Systems, Budapest, Hungary,
Oct. 1990, pp. 290-297.
[3] A. Abur, and H. Singh, “Time Domain Modeling
of External Systems for Electromagnetic Transients
Programs”, IEEE Trans. on Power Systems, Vol. 8,
No. 2, pp. 671-679, May, 1993.
[4] Sun Microsystems, Inc. “Multihreaded
Programming Guide”, 1997.
[5] A. Geist, A. Beguelin, and J. Dongarra, J., “PVM:
Parallel Virtual Machine”, MIT Press 1994.
[6] J. Arrillaga. And B. C. Smith. Power System
Harmonic Analysis. John Wiley and Sons.
[7] IEEE Recommended Practice for Industrial and
Commercial Power Systems. IEEE.
[8] F. Alvarado, F.; R. Betancourt, G.T. Heydt
“Parallel Processing in Power Systems
Computation”, IEEE Transactions on Power Systems,
Vol. 7 No. 2. pp. 629-638. 1992.
[9] [online]. Avaliable: www.gnuplot.info
[10] Sun Microsystems, Inc. “Multihreaded
Programming Guide”.
[11] C.M. Pancake, “Multithreaded Languages for
Scientific and Technical Computing’, Proceedings of
the IEEE, Vol.2 No. 81, pp. 288-304. 1993.
[12] I. Foster, Designing and Building Parallel
Programs Addison Wesley, 1994.

Appendix I

Power System Component Models

Synchronous Machine

"
generator dZ r h jX h= +

where

"
dX generator subtransient reactance.

r resistence
h harmonic order

Transformer

 "

generator dZ r h jX h= +

where

tX transformer short circuit reactance.
 resistence r

h harmonic order

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp229-234)

http://www.gnuplot.info/

