4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp72-76)

Study on Reactive Power Optimization Problem Taking the Line
Current as State Variable

Zhang Jinsong' Wang Chengmin® Zhang Gong?, and Hou Zhijian*
1.Department of Electrical Engineering
Shanghai Jiaotong University, 2.EPRI of China
Shanghai, Huashan Road, No. 1954, Beijing, Qinghe Xiaoting
China

Abstract: -The math model of optimization problem is established by describing the electric power network
equations as the hybrid form with node voltage and line current based on 7 equivalence circuit of power
equipment, there the objective function is performed with a product of line current magnitude square and line
resistance. It is indicated that Kuhn-Tacker optimal conditions are simple and convenient while the line current
is considered as state variable in this paper. Finally, the case study is made by grads method at IEEE-30 system,
it is explained that calculation efficiency of proposed method is higher than the method based on node voltage
with direct expression due to the more information about state variable is included in the objective function.
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1 Introduction

The node voltage analysis is the main method in
conventional power system application considering
the nodal injective power and node voltage as
variable, the line power is only used in reduced
analysis for example in DC power flow calculation,
but the line current is rarely taken into state variable
account.

The line current method is proposed by Goswami
in literatures [1]~[3] with the advantages which is
able to treat with the mesh and quickly convergences
considering the load as constant impedance model
and the grounding branch of a line is ignored. It is
feasible in the distribution network while these
assumptions are generally unsuccessful in the
transmission network. Therefore, there are some
limits. The basic line model is established in [4,5]
discarded the above terms by taking the nodal
injected power as a voltage source and the impedance
branch as link branch and the grounding branch as
tree branch based on the =z equivalence circuit,
therefore the line analysis method is introduced for
electric power network. The line current is actually
line current while there is no line degradation, which
can be considered as state variable, so the analysis in
power network is more direct.

The optimal power flow model is best method to
solve the reactive power optimization problem up to
now included the interior point method[6,7] and the
evolvement arithmetic[8]~[11] and other method[11]
etc. The summarization is made in [12] and the
shortcomings are pointed out that calculating
efficiency must be ulteriorly improved and the

dealing with inequality constraints is not very valid.
The math model of optimization problem is
established by describing the electric power network
equations as the hybrid form with node voltage and
line current based on 7z equivalence circuit of power
equipment, there the objective function is performed
with a product of line current magnitude square and
line resistance. It is indicated that Kuhn-Tacker
optimal conditions are simple and convenient while
the line current is considered as state variable in this
paper. Finally, the case study is made by grads
method at IEEE-30 system, it is explained that
calculation efficiency of proposed method is higher
than the method based on node voltage with direct
expression due to the more information about state
variable is included in the objective function.

2 The network equations

Ri+jX;

Fig. 1 Basic z Circuit

The above x -type equivalence circuit is the basic
unit of power network analysis while the load is
considered as a voltage source showed in figure 1.
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In figure 1, s;=p; +jg; and s; =p; + jq;
denote nodal injected power; u; =€, + jf, and
u,=e;+ jfj denote the node voltage; line current
is i, =i+ ji ; the subscript i,j=12,---,N
denote the node number; the subscript 1 =1,2,---, L
denotes the line number. Therefore, line current
equation can be represented as below:

iI(Rij+inj)=ui_uj 1)
It is obtained by expanding formula (1):

iRy —ii X; —¢e; +e; =0

i,aXij +iirRij -fi+f,=0
However, the voltage at node i of the equivalent
voltage source of the load branch is:

o p, - iq, .

. zili _uiZ(GI +JBy)

lei lei

It follows from (3) that:
uizili_ui UiZ(G| +JB)=p - Jjo; (@)

lei lei

Above equation is represented as the plural form:

(e - jfi)(zil? + JZ'D -
lei lei )
(ei2 + fiz)Z(Gl + jB|) =P - jQi

Furthermore, it is obtained:

eizil? + fizilri _(ei2 + fiz)zGH =P

()

lei lei lei (6)
eiziﬁ - fizil? — (e + fiz)z B, =—q
lei lei lei

While the conductance G, of the ground branch is
ignored, it is chenged as follows:

eizil? + fiZhE =P

lei lei 7
eiziﬁ - fizil? — (e} + fiz)z B, =-q, )
lei lei lei

As for node |, there is the same form of nodal

voltage function with the node i. The equations (2)
and (7) are the basic models of the power network.

3 Reactive power optimization

problem
It is to minimize the network losses as the objective
function of reactive power optimization problem:

Z =min ZL:I,ZR, (8)
1=1

where 1 =12,---,L denotes line number; |, and

R, are the current magnitude and resistance of | -th

line. The equality constraints are network equations,
while the conductance of grounding branch is
ignored they can be describe as following polar
coordinates form:

V,c0s6, > 1, cosg +V,sing, > 1, sing, = p,

lei lei
)
V;c0sg, > 1, sing —V;sing, "1, cosg
lei lei (10)
_ViZZBI =-0; +q

lei

where V,, 8, respectively are the voltage magnitude
and angle of node i; ¢, is the current angle of line | ;

g, isthe compensatory capacity in reactive power of
node i. The above formulas can be change as:

Viz I| COS(¢| _‘9i) =P

lei (11)
Viz I, sin(¢, _Hi)_ViZZBI == + g

lei lei

The line current variables also satisfy following

equations by setting R, = R;;, X; = X;;:

I, cosg R, —1,sing X, -V, cosg, +V, cosd; =0

I, cosg X, +1;singR, =V, sing, +V,sind; =0
(12)

The inequality constraints of reactive power

optimization problem are:
VALE VAR ALY (13)
and:
g <0 <dg (14)
The reactive power optimization problem is
composed with formulas (8), (11)~(14).

4 Kuhn-Tacker conditions

While the reactive power optimization problem is
described as the form of nonlinear programming, the
objective function is:

f(xy)=0 (15)
The equality constraint is:

g(x,y)=0 (16)
The inequality constraint is:

h(x,y) <0 17)

where, X is the state variable; y is the control
variable. The enlarged Lagrange function is:
L=fX)+a g(x,u)+ B h(x,Yy) (18)
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where «, [ are the Lagrange multiplies respectively

corresponding equality and inequality constraints.
The Kuhn-Tacker conditions are as:

L, =f +a'g,+8"h =0 (19)
L, =f,+a'g,+8"h =0 (20)
g(x,y)=0 (21)
ph(x,y)=0 (22)
h(x,y) <0 (23)

The scale of reactive power optimization problem is
smaller while the line current is considered as the
state variable compared with the case that line current
and node voltage are as state variable, there are:

f, =2RlI (24)
where R is diagonal matrix with the line resistance
elements; | is the line current vector; and:

f,=0 (25)
To linearize the formulas (12) and (13), it can be
obtained:

AE H N/ Al 0
= + AY (26)

AS J LAV W
where, AE is the line voltage error vector; AS is
nodal injected power error vector; Al is the line
current error vector; AV is the node voltage error
vector; AY isthe control variable error vector; H is

block diagonal matrix with dimensions 2Lx2L as
following form:

{R, cos¢ — X, sin g,

— R/, sing — X1, cos ¢
X, cos¢ + R, sing

R, cosg — X1, sin g

(27)
N is the node-line incidence matrix with dimensions
2Lx2N as following form:

{— cos 6,

V, sin 6,
. } (28)
—-sin g,

~V, cos 6,

J is a matrix that structure is same with the
node-line incidence matrix with dimensions 2 Nx2 L
as following form:

V,cos(¢ —6,) -Vl sin(g —6,) -
Visin(¢ —6,) Vi1, cos(¢ —6,) 9)
L is a diagonal matrix with dimensions 2Nx2N as
following form:
lecos(ﬂ_ei) Vizl|5in(ﬂ_‘9i)
S 1sin-0) -2 T8 V.31, costh 6)
€l €l €l (30)

W is a block diagonal matrix with dimension 2NxN

and its elements are as [0 1] . It can be seen from

formula (26):
AE = HAI + NAV (31)
AS = JAl + LAV +WAY (32)

If AS=0 , the AV =-L"(JAI +WAY) is
obtained and introduced in formula (29), the line
current corrective equation is:

AE = (H — NL™J)AI — NL"'WAY (33)
where g, = H — NL™J is the Jacob matrix for line

current  analysis; the g, =—NL"W  with

dimensions 2L xN.

5 Calculation
The Newton and grads method can be used to solve
the Kuhn-Tacker conditions expressed by formulas
(18)~(22). The grads method is used in this paper due
to explain the efficiency of proposed arithmetic. The
processes are as:

1) To set k =0 and give the initial value of
control variable vector yk :

2) To calculate power flow according to formula
(21);

3) To adjust that node voltage is whether or not
violated, the penitentiary multiplier S must be

determine if yes; otherwise to continue;
4) To perform coefficient matrixes and calculate

Lagrange multiplier & according to formula (19);

k k
5) To set Ay" =g, (because of that fy,hy
are equal to 0) and determine the corresponding
control variable error vector, the iterations are ended
if enough smaller; otherwise to correct the control

variable:
yk+l:yk+skAyk (34)
where the S* is iteration step, which can be

determine by one-dimensional searching technology.
It is to adjust the control variables is whether or not

violated by formula (14), the Ay =0 if

corresponding control variable is violated at node i,
then to set k =k +1 and turn to step 2);

The following points must be explained in above
processes:

1) The node voltage analysis method is still used
to calculate power flow in step 2) above, then the line
current can be obtained according to formula (12)
and the matrixes H,N,J,L also are get. The

network states are either obtained by combining the
formula (11) with (12), but the scale of problem is
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enlarged and works are increased, 1 2.96097
o . 2 1.03308
2) The penitentiary multiplier ,B" can be solved 3 0.0757143
by probe method and interior point method, there is . P
not explained in detail; 6 0.36855
3) The calculation of h, must be regarded due ; i-?j‘;gg
to the node voltage is just related in formula (13). 9 1.27351
While the control variable error is ignored, it can be o o
seen from formula (33) that is as: 12 0.143271
-1 13 0.304861
] AV =-L"JAl (35) 14 0564292
viz.: 15 0.0563208
1 16 0.608776
hy =AV/Al =-L7] (36) 17 0.0770484
. . 18 0.0824186
The matrixes h,,g,,9, can be expediently 20 00414895
obtained because of the block diagonal form in - oo
matrix L. 21 0.0757026
22 0.133785
23 0.130145
24 0.450157
25 0.123161
6 Case study _ 27 00395628
The case study is made at IEEE-30 system by using 28 0.601978
grads method due to indicate the efficiency of > S
proposed in this paper. The calculating results are 31 0.455993
listed in table 1 with the node data and table 2 with 32 0.0642532
- 33 0.0309831
the line data. 34 0.311054
35 0.0233962
Tab.1 The Results in Nodes gg 88%22@23
Node Magnitude of Angle of 38 0.0827966
No. Node Voltage Node Voltage 39 0.180353
1 1.0325 -4.69514 40 0242551
2 1.0913 -6.2897 al 113922
3 1.0883 -7.96668
4 1.02742 -11.4393
2 183323 ﬁgggg The 5 iterations are needed to solve the reactive
5 110058 5.98669 power optimization pro_blem by grads method based
8 1.00828 -8.04644 on the line current variable, the network losses are
20 182301 ?04(7)‘112‘71 listed in table 3. In table 4, the calculating results by
1 105719 -0.76528 different methods are showed. The calculating effects
12 1.04303 -10.8103 with the line current variable are better than the case
- igﬁgi 18;;32 with node voltage variable by grads method and
15 1.05318 -10.4868 approaches to the calculating results by Newton
1673 18;1;25 301253% method with node voltage variable. It is explained
18 105184 119833 that efficiency of th_e propose_)d m(?thod in this paper_ls
19 1.05604 -10.116 high due to the information in f, appeared in
20 1.02008 -6.90728 .
21 1.04854 -10.6507 formula (19) is much more.
22 1.0338 -2.73349
23 1.02776 -5.62431
24 1.06526 -9.13676
25 1.05059 -10.2218 Tab.3 The Network Losses
26 1.05442 -10.5013 Iter. 1 > 3 2 5
27 1.04465 -11.0428 Net
28 1.06307 -9.97491 Los 00710068 00707587 0070587 0.0704896 0.0704643
29 1.02309 -6.49742
30 1.05 0

Tab.2 The Results in Lines ) ) ) )
Line Magnitude of Tab.4 Comparing with Other Arithmetic
No. Line Current Methods  Iterations ~ Network  Compensatory  Compensatory
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Losses Capacity at Capacity at
Node 10 Node 24
1 5 0.0704643 0.22275 0.145011
2 6 0.0704835 0.198811 0.105563
3 5 0.0704647 0.216341 0.132754

In table 4, the 1 denotes ‘Grads Method with Line
Current Variable” and the 2 denotes ‘Grads Method
with Node Voltage Variable’ while the 3 *‘Newton
Method with Node Voltage Variable’.

7 Conclusion

The objective function is directly expressed as the
network losses while the line current is considered as
state variable by describing the reactive power
optimization problem to optimal power flow form. It
is indicated that calculating efficiency of the
proposed method in this paper is quoteworthy seen
from the calculating results due to the variety in the
objective function value is sensitive while the state
variable changes.
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