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Abstract: - In this paper we analyze some dynamical systems, whose motion is not on continuous path, but on a fractal one. 
Starting from El Naschie's space time and E-Infinity theory we show a mathematical approach based on a potential theory to 
describe the interaction system-support. We study some relevant force fields on Cantorian space and analyze the differences 
with respect to the analogous case on continuum. Furthermore, we consider the idea that a Cantorian space could explain 
some relevant stochastic and quantum processes, if the space acts as a harmonic oscillating support. This means that a 
quantum process could sometimes be explained as a classical one, but on a non differential and discontinuous support, that is 
without invoking quantum mechanics. We consider the validity of this point of view, that in principle could be more realistic, 
because it describes the real nature of matter and space. Indeed, the presently observed large scale structure reflects the 
phenomenology of the microscopic world. The consequence of this point of view could be extended in many fields such as 
biomathematics, structural engineering, physics, astronomy, biology and so on. 
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1   Introduction 
Nature shows us structures with scaling rules, where 
clustering properties from cosmological to nuclear objects 
reveals a form of hierarchy. Moreover, many systems show 
an oscillatory behaviour. In the previous papers, the authors 
consider the compatibility of a Stochastic Self-Similar, 
Fractal Universe with the observation and the consequences 
of this model. In particular, it has been demonstrated that 
the observed segregated Universe is the result of a 
fundamental self-similar law, which generalizes the 
Compton wavelength relation, R(N)=(h/Mc)N{φ}, where R 
is the radius of the structures, h is the Planck constant, M is 
the total Mass of the self-gravitating system, c the speed of 
light, N the number of nucleons within the structures, and 
φ=((√5-1)/2) is the Golden Mean value [1].    It appears that 
the Universe has a memory of its quantum origin as 
suggested by R.Penrose with respect to quasi-crystal [2]. 
Particularly, the model is related to Penrose tiling and thus 
to  theory (Cantorian space-time theory) as proposed 
by El Naschie [3], [4] as well as with Connes 
Noncommutative Geometry [5]. 

)(∞ε

Reading El Naschie's papers and the previous contribution, 
it clearly appears that the E-Infinity theory is a new 
framework for understanding and describing Nature. 
Probably, the main point of the theory is the fact that 
everything we see or measure is resolution dependent. As 
reported by El Naschie, in E-infinity view, spacetime is an 
infinite dimensional fractal that happens to have D=4 as the 
expectation value for the topological dimension [7]. In 
detail, the topological dimension 3+1=4 means that in our 
low energy resolution, the world appears to us as if it were 

four-dimensional. The vision presented by El Naschie for 
the micro-world and by Iovane for the macro-physics, 
suggests a radical change based on Cantorian spacetime. 
Here  Cantorian space-time is the physical spacetime, 
where nature manifests its transfinitness; while as we have 
seen in [6] Hilbert's space H

)(∞ε

(∞) is a mathematical framework 
to describe the interaction between the observer and the 
dynamical system under measurement. 
The present formulation, based on the non classical 
Cantorian geometry and topology of spacetime, 
automatically solves the paradoxical outcome of the two-slit 
experiment. As we will see in detail, the measurement, from 
a mathematical point of view, is equivalent to a projection 
of  on H)(∞ε (∞) based on a 3+1 Euclidean space. As 
predicted in some papers by El Naschie, the mathematical 
solution of the two-slit experiment is the physical 
realization of Gödel's indecidability. 
In the present paper we study the behaviour of a harmonic 
force field on Cantorian space and analyze the differences 
with respect to the analogous case of a continuum. The idea 
that we want to stress in this paper is that a Cantorian space 
could explain some relevant stochastic and quantum 
processes, if the space acts as a harmonic oscillating 
support, such as it happens in Nature. In other word, the 
vision is that an apparent uncertainty, linked with a fractal 
support rather than a continuous one, can produce an 
uncertainty on the motion of a physical object, which is 
explained via a stochastic or quantum process. This means 
that a quantum process, in some cases, could be explained 
as a classical one, but on a non continuous and fractal 
support. Consequently, an external observer looking at the 
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motion of a particle under a fixed solicitation can measure 
an unusual behaviour with respect to a continuous support, 
that is obvious with respect to the knowledge of the fractal 
support behaviour. In this case, he can make the hypothesis 
of an uncertainty or a stochasticity in the process (motion), 
while there is just really ignorance with respect to the 
support on which the motion takes place. 
We show how the Heisenmberg's uncertainty principle can 
be translated from the processes and systems to the support, 
where we have classical dynamics. We consider the validity 
of this point of view, that in principle could be more 
realistic, since it describes the real nature of the matter, 
force and spacetime, which does not only exist in Euclidean 
space or curved only, but in a Cantorian spacetime as well. 
To do this we will introduce the creation and annihilation 
operators to create and destroy holes whose behaviour is 
comparable with quantum harmonic oscillators. In a sense, 
instead of considering the motion of a system in quantum 
mechanics, we have also another chance; that is, we can 
consider the classical motion of a system but on a Cantorian 
support, that shows the behaviour of a harmonic quantum 
chain.In conclusion, we arrive at a possible genesis of the 
multifractal space . )(∞ε
 
2   Cantor space and E-infinity Cantorian 
space 
In [6] the author presented some results to show the link 
between E-Infinity and Hilbert (and Sobolev) spaces. Here 
we introduce some well known results in the functional 
analysis and summarize some results in [6] to focus our 
attention to dynamical systems on the Cantorian ɛ(∞). 
 Let Ω be a nonempty open set in Rm. 
Definition 1: Let us consider  with 1≤p<∞, we pose Rp∈
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Definition 2: Let us consider a finite or infinite complete 
vector space H on the field of complex numbers. In this 
space, a scalar product is defined  so that for 
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Remark 1: ( )Ω2L  with a scalar product is a Hilbert's 
space such as Sobolev's Space H¹ on L²; we will introduce 
in the following. 
 From the Riesz-Frechet representation theorem it follows 

that a state function can be written as ∑
∞
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with the norm  
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is named Sobolev's space. 
Definition 4: We denote H¹(Ω)=W1,2(Ω). 
Theorem 1: The space H¹(Ω) is a separable Hilbert's 
space. 
We can call H²(Ω)=W 2,2(Ω). Consequently, we understand 
the functions of state ψ∈H². 
Definition 5: We can also define W q,∞(Ω) as 
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with the norm  
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∞∞
≤≤

=
Lqw

fDf q
α

α0
max,   

         (9) 
 
The mathematical tools introduced above are general: they 
can be used in quantum mechanics but not only in it. In [6] 
it has been showed their application to E-Infinity. From a 
mathematical point of view, in quantum mechanics we 
consider Hilbert's space on complex field C, while on 
Cantorian spacetime the basic field is R. Furthermore, while 
in quantum mechanics we have an uncertainty on the state 
or on the process (it depends if you use Schrödinger or 
Heisenberg representation), here the uncertainty is linked to 
the geometry and topology of the spacetime and more in 
deep to the resolution through which we make the 
observations. Consequently, also by using the same 
mathematics, the physical interpretation of nature and 
motion is completely different. Indeed, while in quantum 
mechanics we have Heisenberg's uncertainty, in E-Infinity 
we use a probabilistic approach to describe the motion on 
"complex" path on Cantor set. The main difference is that if 
we know the exactly geometry and topology of the support 
on which the motion happens we have no uncertainty. In 
addition, our approach as we will show, allows us to link 
the probability of a possible path directly with a potential 
energy function linked to the geometry and topology of the 
support (both material and energetic support). 
Now if we consider E-Infinity, the following results can be 
reached. 
 
Definition 6: By using the same notation and meaning of 
the previous definitions and theorems, the following 
definitions hold 

( )( )HM με ,,∞  is a Measure space; 
 ( )( )HL με ,1 ∞  is a Functional space of integrable function; 

( )( )HL με ,2 ∞  is a Functional space of square integrable 
function; 

( )( ) ( )( )H
q

H
q WH μεμε ,, 2, ∞∞ =  is a Sobolev space 

corresponding to integrable function; 
Naturally, for physical applications among Hq Sobolev's 
space H²(ɛ(∞),μH) is the most relevant, we named it H(∞). 
In the descriptive set theory and the theory of polish spaces 
it is shown that [8]: 
Definition 7: When a space Aℕ is viewed as the product of 
infinitely many copies of A with discrete topology and is 
completely metrizable and if A is countable, then the space 
is said to be polish. 
 
In particular, when A={0,1},|A|=2, then we call C=2IN 
Cantor space. For A-1 defined in an interval A-1 ]0,1[ then 
C

⊂
F=AIN is called a fuzzy Cantor space. If |A-1|=(√5-1)/2 and 

N=n-1, where -∞≤n≤∞, then CF =  is the E-infinity 
Cantorian space. Mohamed El Naschie in [9] showed the 
relationship between the Cantor space C and  As He 

reports: " the relationship comes from the cardinality 
problem of a Borel set in polish spaces Thus we call a 
subset of a topological space a Cantor set if it is 
homeomorphic to the Cantor space". 

nε

∞ε

2.1 Preliminaries 
We denote by D(Ω) the set of C∞(Ω) functions with 
compact support in Ω, D(Ω):= C∞

C (Ω). 
 
Definition 8: A distribution is a linear mapping 

ϕ,TT → from D(Ω) to R, which is (sequentially) 

continuous, i.e. if ϕϕ →n  in D(Ω), then nT ϕ,  

→ ϕ,T . The set of all distributions is called D′(Ω). 
 
Each L¹(Ω) function, say f∈L¹(Ω) can be regarded as a 
distribution setting 

( ) ( ) ., dxxfxf ∫
Ω

= ϕϕ   
          

But D′(Ω) is much larger, for instance one may consider the 
Dirac mass centred at 0, with 0∈Ω, δ0 defining 

( ) ( ).0:, 00 ϕδϕϕδ == ∫
Ω

x   
          

Definition 9: A sequence {Tn} in D′(Ω) converges to 
T∈D′(Ω) if 

( ).,,, Ω∈→ DeveryforTTn ϕϕϕ   
  

Definition 10: Let Ω be an open set in Rm. Let T∈D′(Ω). 
Then the derivative of T with respect to xj is defined as 

jj x
T

x
T

∂
∂

−=
∂
∂ ϕϕ ,,  

 
          

for every ( )Ω∈Dϕ . 
  

 

If T∈D′(Ω), the support of T is the smallest set K outside 
which T vanishes, in the sense that ϕ =0 outside K, i.e. 
<T,ϕ >=0. 
We also recall that the derivative operator, defined above is 
(sequentially) continuous, in the sense that if a sequence of 
distributions {Tn} converges to T in D′(Ω), then the 
sequence {DTn} still converges to DT. 
Assuming that S,T∈D′(Rm), either S or T has compact 
support, then the convolution of S and T is defined by 
 

( ) ( ) ( )yxyTxSTS +=∗ ϕϕ ,,  
         (10)

 
and convolution is easily seen to be a commutative 
operation. 
 
Theorem 2: Let S be in D′(Rm), and assume that Tn→T in 
D′(Rm) and one of the following holds: 
  i) The supports of all the Tn are contained in a common 
 compact set; 
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  ii) S has compact support; 
  iii) m=1 and the supports of the Tn and of S are bounded 
on the same side, independently of n. 
Then Tn ∗S→T∗S D′(Rm). 
For further details about the Theory of Distributions we 
refer to [10]. 
In the remainder of this section we recall well known facts 
of measure theory for reader's convenience. This section is 
very much inspired by [11]. 
Let X be a non empty set and M a σ-algebra in X (closed to 
∅,X complementation and countable union). 
 
Definition 11: Let (X,M) be a measure space and 
μ:M→[0,∞]. We say that μ is a positive measure if μ(∅)=0 
and μ is σ-additive, i.e., for any sequence {Eh} of pairwise 
disjoint elements of M, 

( ).
00

h
hh

h EE ∑
∞

=

∞

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μμ U  

 
          

 
A positive measure μ such that μ(X)=1 is called a 
probability measure. 
 
Definition 12: Let X be a locally compact and separable 
metric space, B(X) its Borel σ-algebra (σ-algebra generated 
by open sets), and consider the measure space (X,B(X)). 
A positive measure on (X,B(X)) is called a Borel measure. If 
a Borel measure is finite on compact sets, it is called a 
positive Radon measure. 
 
By [Mloc(X)]m it is usually denoted the space of the 
Rmvalued Radon measures on X. 
 
Definition 13: Let μ∈[Mloc(X)]m and let {μh}h⊂ [Mloc(X)]m; 
the sequence {μh}h locally weakly ∗ converges to μ if 
 

∫ ∫=∞→ X
X

hh
udud μμlim   

          
for every u∈Cc(X); if μ and μh are finite, we say that {μh}h 
weakly ∗ converges to μ if 

∫ ∫=∞→ X
X

hh
udud μμlim   

          
Theorem 3: If {μh}h is a sequence of finite Radon measures 
on the locally compact and separable metric space X with 
sup{| μh |(X):h∈N}<+∞, then it has a weakly ∗ converging 
subsequence. Moreover the map μ→ |μ|(X) is lower 
semicontinuous with respect to the weak ∗ convergence. 
 
Remark 2: It is useful for our aims to recall that if X 
coincides with a non empty open set Ω in Rm, then any 

Radon measure in M(Ω) is a distribution, ∫=
X

dμϕϕμ,  

for every ϕ ∈D(Ω). 
 
Definition 14: Let (X,ε ) and (Y,F) be measure spaces, and 
let φ:X→Y be such that φ⁻ ¹(F) ∈ε  whenever F∈ . For 
any positive measure μ on (X,

F
ε ) we define a measure 

φ♯μ(F) in (Y,F) by 
( ))(:)( 1

# FF −= ϕμμϕ   
          

for every F F∈ . 
 
Given any Radon measure ν on the measure space (X,ε ), 
and any subset G in ε , with the symbol ν⌊F, we mean the 
measure ν acting on G∩E, for any E∈ ε . 
The notions of Hausdorff measure and dimension will be 
needed in the sequel. 
Consider the metric space (Rm,d), where d is the metric 
induced from the Euclidean norm. Let A  R⊂ m be bounded. 
By A we denote the set of sequences of subsets {Ai⊂ A}, 

such that A= U . 
∞

i iA

Let 0<ɛ<+∞, and 0≤s<+∞. We define 
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Clearly ( )AH s
ε increases as ɛ→0, hence 

 
( ) (AHA s

ε
ε 0

s limH
→

= )   
         (11)

is well posed. 
The next Theorem is proven in [12]. 
Theorem 4: Let m be a positive integer. Let A be a bounded 
subset of (Rm,d). Then there exists a unique real number 
dimH∈[0,m] such that 

( ) [ [
[ [⎩

⎨
⎧

+∞∈>
+∞∈<∞

=
,0dim0
,0dim
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sandsif
sandsif

A
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We can construct the Cantor set by using a uniterative 
procedure (see [13] for details). 
Let us consider a set of intervals A={A(1),A(2),....,A(n)} with 
 
 
 

[ ]
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where a,b are real numbers. 
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If w is the level corresponding to A(w) the number of 
extreme points is 2w. 
For a=0 and b=1 we obtain the Cantor space 

with the following well know properties: I
Nn

nCC
∈

=

  ·  C is compact, with null Reinmannian measure; 
  ·  There are no intervals in C; 
  ·  C has the cardinality of continuum. 
For our purpose we consider the set A. In particular, at the 
level w the length of a segment is kw+1=(b-a)/3w with 
w=0,1,2,..,n-1. 
To evaluate the extremes for each a level w without using 
an iterative procedure we show the following algebraic 
method. 
Let us introduce the vector gm=(gm,1,gm,2,...,gm,2

n ) with 
m=1,...,n-1 and with 2ⁿ components, whose values are: 
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         (13)

with s=0,...,2n-m-1-1 and h=1,...,2m-1. For m=n we have a 
vector with all components equal to zero except the 
component at the place 2ⁿ, that is equal to 1, i.e., 
gn=(0,0,...,0,1). Consequently, the coordinates of the 
extremes at a fixed level n are given by the following vector 
 

( ) ,1
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0
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p
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where a=(a,....,a) is a constant vector; in detail, for the 
individual coordinate we have the following result. 
 
Proposition 1: The coordinate of an extreme at the level n 
is 

( ) .,1
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0
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−
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The two expressions (14) and (15) give us a uniterative 
method to evaluate the vector of extremes and a fixed 
extremal at each a level. As example we see 
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It clearly appears how the previous definition and two 
propositions can be also used on the set A, which 
generalizes the Cantor space on the interval [a,b] instead of 
[0,1]. 
We also recall that dimH(A)=((log2)/(log3)) and 

, (see [14]). 1)(dim =AH H

Starting from the construction of A presented above we can 
define a sequence of probability measures on the (locally 
compact and separable) metric space (R,d), where d is the 
Euclidean metric, namely 
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where  is the i-th point, which leads to the construction 
of A at level n. 

n
ic

    By virtue of Theorem 3 the sequence { }nμ  admits a 
weakly ∗ converging subsequence { }

nkμ . From Definitions 

9 and 13 it follows that the sequence { }
knμ  converges also 

in the sense of distributions. 
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In order to identify the limit probability measure μ, we 
consider the primitives , (we recall that if a 

sequence  converges to T in D′(R) then the 

sequence  still converges to , cf. [10].) where 

 is the step function below 

∫ = nn fdu

{ } )(RDTn ′⊂
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    The sequence  converges uniformly to the Cantor-
Vitali function f. 

{ }nf

    It can be easily shown that f is increasing and continuous 
with 'classical' derivative coinciding with 0 a.e. On the other 
hand, one can prove that the distributional derivative of f, 
namely Df is a probability measure μ supported on C, and it 
results 

3log
2log

H=μ ⎣A. 
 

 
        (18)

 
Hence 

)],0([)( 3log
2log

AtHtf ∩=  for any  0≥t
 

 

 
        (19)

 
(see [11] for details). 
Consequently we can say that the sequence of distributional 
derivatives , namely {{ nDf } }nμ  converges in the sense of 
distributions to the derivative of f, the probability measure 
Df in (18), i.e. 
 

3log
2log

HDfDf nn =→= μ ⎣C  in  )(RD′
 

 
        (20)

We also emphasize that this measure is the only probability 
measure on C which satisfies a scaling property as C itself 
does, namely 
 

1[
2
1 s=μ # ( μ ) 2s+ # (μ )] 

 
        (21)

As a consequence we can also say that 3log
2log

H ⌊A is the limit 
in the sense of Definition 13 of the whole sequence { }nμ . 
Next taking any distribution (potential) )(RDV ′∈  
satisfying the assumptions of Theorem 2, we may define, 
again keeping in mind the scheme above, a sequence of 
'potentials' { }nV , defined as  

∑
=

−=
n

i
inn cxVxV

2

1
)(

2
1:)(  

 

 
(22) 

where  is a generical point as in A. ic
Clearly we may rewrite (22) as 

n
i

cnn

n

i
VV μπδ∑

=

∗=∗=
2

12
1

 

 

 
(23) 

Again Theorem 2 and convergence (20) give us that 

3log
2log

HVVn ∗= ⎣A in  )(RD′
 
 

 
(24) 

This argument proves the following theorem 
Theorem 3 Let { }nμ  be the sequence of probability 
measures in (16) and let V be any distribution in D′(R) 
satisfying the assumption of Theorem 2. Then (24) holds, 
with Vn defined in (22). 
Remark 3  We stress that if the potential V is more 
regular than what is required by Theorem 2, the 
convergence in (24) can be shown to be much 
stronger. 
Remark 4 It is worthwhile mentioning that the 
argument above can be easily adapted to other kinds of 
Fractals, more general than A. The potential V can be, 
as already mentioned, very general, thus leaving the 
opportunity to describe many physical problems. For 
instance, a Gaussian potential will work for describing 
a barrier or an obstacle on the support where the 
motion happens. Furthermore the sequence { }nμ  
presented in (16) can be replaced by any other 

probability measures' sequence converging to 3log
2log

H ⎣A. 
Our choice risen from the reason of working out a 
basic case. Clearly other choices are possible, even 
not probability measures' sequences, but just uniformly 
bounded ones, thus leading to describe other limit 
measures μ still supported on the same fractals but 
with different weigh. 
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3 The physical scenario and the unification 
of the fundamental interactions in ( )∞ε  
Cantorian 
    Are there other direct or indirect consequences of the fact 
that the real spacetime is infinite dimensional hierarchical? 
    In [1], [15], [16] the author demonstrated that the 
Compton wavelength rule is a special case of a self-similar 
law. In detail, the following theorem occurs. 
Theorem 6: The structures of the Universe appear as if 
they were a classically self-similar random process at all 
astrophysical scales. The characteristic length scale has a 
self-similar expression  
 

φφ N
cm

hN
Mc
hNR

n

== +1)(  
 
         (25)

 
where the mass M is the mass of the structure, mn is the 
mass of a nucleon, N is the number of nucleons into the 
structure and φ  is the Golden Mean value. In terms of 
Plankian quantities the length scale can be recast in 

( )φ+= 1)( N
G
c

m
lNR

P

P
P

h
. The previous expression reflects 

the quantum (stochastic) and relativistic memory of the 
Universe at all scales, which appears as hierarchy in the 
clustering properties. 
From the previous theorem it follows that it exists a 
fundamental length 
 

;
G
c

m
lR

P

P
P

h
=  

 
         (26)

it can be seen as the minimum resolution, under which we 
have stochastic fluctuations of the geometry and topology of 
spacetime. Moreover, for N→1 R⇒ P(N)→RP with fixed 
hierarchical jumps, corresponding to fixed fundamental 
scale linked with the global geometry and topology of 
spacetime. 
As showed in [16], it is easy to find the following general 
expression, which links the energy at macroscopic scale 
with the microscopic one. 
Theorem 7: The mass and the extension of a body are 
connected with its quantum properties, through to the 
relation 

,)( 1
,

φ+= NENE PNE   
        (27)

that links Plank's energy and Einstein's one. 
Moreover 
 

)(~,)( ,
1

, NEENENE NPEPNE =⇔= +φ   
       (28) 

where 
 

,~)(~
, υhNE NP =   

       (29) 
with )1()(~ φνν += NN . 
    The quantum (stochastic) and relativistic memory is 
reflected at all scales and manifests itself through a 
clusterization principle of the mass and extension of the 
body. 
    From the previous relations it follows that it exists a 
characteristic frequency of each scale. It is linked up its 
mass and extension. 
Could some deviations exist in the Newtonian law at low or 
very large distances? 
Let us consider a gravitational potential V=VN (r), which is 
a continuous function of the distance, but also depends 
(discreetly) on the number of the components or better on 
the resolution R(N), i.e. 
 

)(rVN ∝ )(/1 NRre
r

−  
 
       (30) 

For N=1, VN(r) is the Yukawa potential, while for N→∞ or 
R(N) very large VN(r)→1/r. 
By comparing our potential with the Yukawa potential, we 
see that in our case the role of the action radius λ is played 
by the length scale (i.e. by the resolution). As well known 
from some general properties of the relativistic field theory, 
there are some constrains about the alternatives to 

∝)(rVN r
1

 [17]. Indeed, the unique alternative to (30) is 

given by a combination of potential of the (30)-type. This 
means considering different gravitational fields. Moreover, 
the behaviour at large scale of the total potential will be 
dominated by the term with the greatest length scale factor 
R(N). This point of view is similar to the case of higher 
order theories of gravity, where typically the following 
interaction Lagrangian functional is assigned 

L ∝ g− (  �∑
=

+
k

j
j RaR

0

jR) 
 
       (31) 

where R is Ricci's curvature scalar and � is d'Alembert's 
operator. It can be shown that in the Post-Newtonian limit, 
we get 

)(rVN ∝ ⎥
⎦

⎤
⎢
⎣

⎡
+ −

=
∑ ir

n

i
ier

λβ /

0
11

 
 
       (32) 

In other words, any higher order correction to Einstein's 
gravity gives a Yukawa's contribution to the Newtonian 
potential. From these considerations, it clearly appears that 
another hypothesis to the potential (30) is the following 

)(rVN ∝ iNRre
rr

)(/1 −+
α

 
 
       (33) 

For R(N)→∞,VN(r)→1/r, while for r<<R(N)→ 
VN(r)∝((1+α))/r). 
How can we measure α and which is its order of magnitude? 
A full analysis is given in [18], here we can only say that as 
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we will show in the next sections it exists a deep link 
between the geometry and the topology of the spacetime 
(support) and the dynamical system moving on it. 
4   A toy model: an elastic force field on 
Cantorian space 
    The idea that we want to stress here is that a Cantorian 
space could explain some relevant stochastic and quantum 
processes, if the space acts as a harmonic oscillating 
support, such as it happens in nature. In other word, the 
vision is that an apparent uncertainty, linked with a fractal 
support rather than a continuous one, can produce an 
uncertainty on the motion of a physical object, which is 
explained thanks to stochastic or quantum process. This 
means that a quantum process in some cases could be 
explained as a classical one, but on a non continuous and 
fractal support. 
    To show this result we have to consider a classical 
harmonic oscillator on a fractal support and then we have to 
consider it not as the subject of our study, but as the 
scenario where a process could happen. 
Let us suppose that an elastic force field f(q)=–αq is on the 
interval , moreover α is a 
nonnegative elastic constant; it is well known the motion 
equation for a point of mass m coming from the Newtonian 
equation f=ma is, 

],[],[ )1(
2

)1(
1

)1( AAbaA ==

( ) ,02)1()1( =+ qq ω&&   
       (34) 

where ω(1)=α/m and with the solution 
)cos( )1()1(

2
)1( tAq ω=   

        
where we have assumed the initial condition 
q(1)(t=0)=A2

(1)=b and . This can be seen as the 
level 1 of a recursive procedure, where we consider a fractal 
support. In fact, at the level 2 we have 

0)0( ==tq&
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where ; consequently we 
consider the force field 
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where ε(2) is a parameter which takes into account the 
reduction of the support and to preserve the total energy. 
We will determine it in the following. 
    The total path of the level 2 can be see as composed by 
three sub-path: the first and the third with an oscillation 
motion, while the second where we find a uniform motion. 
In fact, it is easy to find for the third sub-path 
 

),cos()( )2()2(
4

)2(
3 tAtq ω=   

        
with (ω(2))2= ε(2)(ω(1))2 , where we have considered the 
initial conditions  and 

 Analogously, we get for the second sub-
path 
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On the first path, we find again an oscillation motion 
( ) ),cos()( )2(

2
)2()2(

2
2

1 BtAtq += ω  
with the following initial condition 

 

and  and so 
 To 

summarize at the level 2 we obtain 
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With respect to the level 1 we have different amplitudes, 
frequencies and phases, but not casual ones since they are in 
agreement with the fractal model inside them. 
    Consequently, an external observer looking at the motion 
of a particle under a fixed solicitation can measure an 
unusual behaviour with respect to a continuous support, that 
is obvious if the knowledge of the support behaviour is 
given. In this case he can make the hypothesis of an 
uncertainty or a stochasticity in the process (motion), while 
there is just an ignorance with respect to the material 
support on which the motion happens. 
    It is easy and obvious to obtain at the level 3 the 
following results: 
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consequently, 
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where more in general at the level n the initial condition for 
the velocity are 
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Consequently, by taking into account Hausdorff ℵ(C) 
measure the asymptotic behaviour gives us 
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    With respect to , here we have used the initial 
condition , but it is obvious that there are no 
changes if . 
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    Thanks to the previous relation we obtain 
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    The same considerations can be done for a  El 
Naschie Cantorian space to obtain similar results. 

)(∞ε

    It is interesting to note that if we have an external 
solicitation F=αq, the motion equation on C becomes 

,2 2 Fqq =+ ω&&  
and so 

,02 =+ qq ω&&  
    that is the traditional motion equation for a massive point 
in an elastic force field. In other word, what we consider an 
external force for the support could be the classical elastic 
solicitation on a massive point moving on a continuous 
support1. This example is just a toy model when we deal 
with macroscopic systems, since the frequency of 
oscillation of the support could be very different with 
respect to the system. But this toy model could be very 
realistic with respect to microscopic and quantum processes 
and systems. For this reason in the next paragraph we 
consider oscillating force fields in quantum mechanics to 
show how the Heisenmberg uncertainty principle can be 
translated from the processes and systems to the support, 
where we have classical dynamics. 
 

5   Dynamical Systems and genesis of ( )∞ε  
Cantorian space 
    To consider a more compact formulation of the 
oscillation on a Cantorian support it is preferable using the 
Lagrangian and Hamiltonian formalism than Newtonian 
formulation. 
    For a structureless massive point (P,m) moving on one 
dimension under the influence of a time-independent 
potential V(q)=(1/2)kq² on a continuum support, we have 
seen that it corresponds to V(∞)(q)=(1/2)((kq²)/(ℵ(C))) on 
Cantorian space C. With respect to Newton's equation of 
motion m = –∂V/∂q to study the time evolution of the 
trajectory, an alternative and more flexible description of 
the same system is obtained by using the Lagrangian 
functional 

q&&

( ) )(
2
1),( )(2 qVqmVTqqL ∞∞ −=−= &&  

    Consequently, the solution q(t) can be achieved as 
solution of Euler-Langrage differential equation 

( ) ( )
.0=

∂
∂

−
∂
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q
L

q
L

dt
d

&
 

    If we use the asymptotic potential V(∞), we easily obtain 
the same results as the previous paragraph. 
    Following the classical development of mechanics and 
thanks to the Legendre transformation (q,q)→(q,p) the 
Hamiltonian functional results 

                                                           
1 To be more correct there is a change in the sign of the force, but 
this is linked with the subject of the problem (support or massive 
point). In other words, the sign minus of the elastic source 
becomes plus if we have it as an external source for the material 
support. 
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is introduced. Consequently, the motion is described in 
terms of the system 
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To consider the quantum theory of the harmonic oscillator 
on Cantorian space, let us introduce the Hamiltonian 
functional for a one-dimensional oscillator 
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In [6] we proposed a toy model for generating E-Infinity 
starting from a continuum. 
 
 A more realistic model can be obtained by using a linear 
chain2. 
. The Lagrangian reads 
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and the equations of motion are 
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with . Nn∈
    All the relations of the previous type describe a system of 
coupled oscillators. The main difference with respect to a 
continuum is that here the qn, qn+1, qn-1 are linked by scaling 
rule as found in Sect.3. 
    There are two interesting limits: 

 When the distance between the oscillators l→0, that 
means to consider the complement of Cantorian set (C)c; 
then  
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and so the motion equation becomes the wave equation 
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 When we consider C we obtain a linear asymptotic 
motion with harmonic fluctuations on C - support. 

 

By introducing the canonical momenta 
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the Hamiltonian functional becomes 
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2 The 3-dimensional case is a trivial generalization. 
 

To solve the motion equation (36) we specify the boundary 
condition q1=qN. It is useful to introduce normal coordinates 
with a set of linearly independent basis functions 

lnikk
n e

N
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where k is the index of the basis set. 
Consequently, we obtain the discrete Fourier decomposition 
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We can make the following remarks 
 k plays the role of wave number; 
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By introducing (37) in (36) we obtain 
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and by taking into account that the value of un
k for different 

n differs from a phase factor, that is  we 
obtain 

k
n

iklk
n ueu ±
± =1

                       

( ) ( ) ),()(22)( 2)( tataee
m
kta kkk

iklikl
k

∞− −=−+= ω&&

   
     (38)

 
 

with 

( ) .
2

sin4)cos1(4 0)( klkl
m
k

k ωω =−=∞  

In other words, starting from a system of coupled oscillators 
(that is (36)) we obtain solutions as uncoupled oscillators 
(this is the reason to use normal coordinates). 
The solution of (38) is 
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and so (for k→ –k) 
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In order to consider the quantum approach, it is useful to 
write the canonical momenta as 
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that leads to 
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Such as above the transition from classical to quantum 
approach is obtained by replacing the position qn with the 
linear operator qn and the momentum with the operator pn; 
consequently 
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The previous considerations for a single quantum oscillator 
on a Cantorian space are also valid for the chain presented 
here in term of normal operators d. 
Remark 5. The creation and annihilation operators, in this 
case, creates and destroy holes, whose behaviour is 
comparable with quantum harmonic oscillators. In some 
sense instead of consider the motion of a system in quantum 
mechanics, we have also another chance, that is, we can 
consider the classical motion of a system but on a 
Cantorian support, that shows the behaviour of a harmonic 
quantum chain. 
Remark 6. By considering Dirac Hole Theory [19], in our 
case the paradigm particle-antipartcle becomes matter-
antimmater, where antimmatter means voids. In this vision 
we could write the Dirac Equation but not only for charged 
particles, but also for gravitating ones. 
 
 
6   Conclusion 
In this paper we have studied the effect of a stochastic self-
similar and fractal support on some physical quantities and 
relations. In particular, we have found an algebraic 
uniterative relation to find the extremes of a Cantor 
segmentation at any level of fragmentation. In our paper the 
knowledge of these points is useful to fix the initial 
conditions of the motion on a fractal support. 

 A Cantorian space could explain some relevant 
stochastic and quantum processes, if the space acts as a 

harmonic oscillating support, such as it happens in 
Nature (see [20]). 

 An apparent uncertainty, linked with a fractal support 
rather than a continuous one, can produce an uncertainty 
on the motion of a physical object, which is explained 
thanks to stochastic or quantum process. This means that 
a quantum process, in some cases, could be explained as 
a classical one, but on a non continuous and fractal 
support. Consequently, an external observer looking at 
the motion of a particle under a fixed solicitation can 
measure an unusual behaviour with respect to a 
continuous support, that is obvious with respect to the 
knowledge of the fractal support behaviour. In this case, 
he can make the hypothesis of an uncertainty or a 
stochasticity in the process (motion), while there is just 
an ignorance with respect to the support on which the 
motion happens. 

 Heisenberg's uncertainty principle can be translated 
from the processes and systems to the support, where we 
have classical dynamics. We considered the validity of 
this point of view, that in principle could be more 
realistic, since it describes the real nature of the matter 
and space, which does not only exist in Euclidean space 
or curved one, but also in a Cantorian one. To do this we 
introduced the creation and annihilation operators, that 
here, create and destroy holes, whose behaviour is 
comparable with quantum harmonic oscillators. 

 We have showed that an alternative to classical and 
quantum path is the classical possible path. We call it 
the classical possible path, since we consider the motion 
of a massive point under the effect of a force field by 
using classical mechanics, but we also consider a non 
continuous path, that is a support with nonmaterialistic 
forbidden voids. In this way we can introduce 
fluctuations and stochastic effects in the motion of a 
classical massive point without invoking quantum 
effects, but considering a more realistic fractal support. 
To be more precise, the support could be a material one, 
but it could also be a vacuum with fixed energetic 
selection rules; this means that the particle follows the 
path with the minimum energy to spend on favorable 
energetic line, such as in the waveguide theory of 
Einstein and Bohm. Consequently, E-Infinity appears as 
an energetic net in which we observe the evolution of 
dynamical systems. Fig.1 shows a possible energetic 
path net instead of a classical continuum. In other words, 
as it can be seen, there are some privileged paths, 
corresponding to different energies (i.e. colours). 

 The present Universe can be seen as a complex 
oscillating system based on a collection of about 1080 
nucleon oscillators. The cosmological consequences of 
the previous model for describing the Universe are 
interesting. For example R.Durrer and J.Laukenmann in 
[21] showed how an oscillating Universe can be an 
alternative to inflation. Moreover oscillatory universe 
solves the flatness or entropy problem. Fig.2 shows a 
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Universe based on waveguide channels (for more details 
see [18]). 

 

 
Figure 1: Possible paths in a waveguides planar energetic 
scenario. 
 

 
Figure 2: Fractal waveguide universe. 
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