
A solution for displaying medical data models on mobile devices

FABRIZIO LAMBERTI and ANDREA SANNA
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi 24, I-10129

Torino, Italy

Abstract: displaying three dimensional graphics on last generation mobile devices such as Personal Digital Assistants (PDAs)
and smart phones is a new and challenging task. Moreover, several additional issues are involved when complex models have
to be displayed such as in 3D medical imaging. Medical data models often result by CT (Computed Tomography) or MRI
(Magnetic Resonance Image) and the obtained volumetric data sets are processed and displayed by volume rendering
techniques. These rendering algorithms require a lot computational power and storage resources not available in nowadays
mobile devices. The paper proposes a distributed architecture where a remote rendering server is able to manage complex
models and to code a MPEG stream to be sent to the client; the user can visualize and analyze interactively the model by roto-
translation commands.

Key-Words: remote visualization, mobile devices, medical imaging, distributed architecture

1 Introduction
3D graphics on mobile devices is a new and challenging
task for researchers and developers. Moreover, the
capability to be able to display complex 3D structures is
worthwhile in several disciplines, for instance in medicine,
biology, seismology, CFD, and so on. In particular, in 3D
medical imaging the visualization of large 3D data-sets is
used for diagnostic purposes and for planning of treatment
or surgery.
 Two approaches are basically adopted to address this
issue. The first approach uses local device resources to
display the 3D scene while the second approach uses
remote hardware (i.e. graphics workstations or specialized
clusters) to render the scene to be displayed on the screen
of the mobile device; in this case a network connection
between the client (the mobile device) and the remote
server has to be established in order to allow images (from
the server to the client) and commands (from the client to
the server) transmissions.
 Some solutions were proposed to locally render 3D
graphics on mobile devices. For instance, the PocketGL [1]
is a 3D toolkit for PocketPC and consists of source code
containing numerous functions which generate and
manipulate a 3D display using GAPI. Although PocketGL
is not identical to the popular OpenGL system for PC there
are enough similarities to allow many OpenGL tutorials to
be used to assist in learning. More recently, two other
technologies have been proposed: OpenGL ES (OpenGL
for Embedded Systems) and M3D for the J2ME. OpenGL
ES [2] is a low-level, lightweight API for advanced
embedded graphics using well-defined subset profiles of
OpenGL. It provides a low-level applications programming
interface between software applications and hardware or
software graphics engines. On the other hand, M3D
(Mobile 3D Graphics API) [3] for the J2ME (Java 2

Platform, Micro Edition) specifies a lightweight,
interactive 3D graphics API, which sits alongside J2ME
and MIDP (Mobile Information Device profile) as an
optional package. The API is aimed to be flexible enough
for a wide range of applications, including games,
animated messages, screen savers, custom user interfaces,
product visualizations, and so on.
 Even although nowadays technologies allow to develop
extremely attractive rendering applications, the visualization
of complex 3D models is still out of the capabilities of
mobile devices. The idea of dividing computational and
visualization tasks allows to overcome limits due to local
hardware and software resources. For instance, Silicon
Graphics, Inc. has developed a commercial solutions named
Vizserver [4] that can be used to provide application
transparent remote access to high-end graphics resources;
moreover, Vizserver enables application-transparent
collaborative visualization functionalities for multiple
simultaneous users. Stegmaier et al. [5] use a VNC version
for PocketPC in order to remotely control a X-server, while
Engel et al. [6] proposed a framework for interactive
remote visualization written in Java in order to provide a
platform independent tool. Recently, Lamberti et al. [7]
proposed a solution able to use hardware-accelerated remote
clusters where the computational task of an OpenGL
application is split among graphics adapters (GPUs) by
means of the Chromium architecture [8,9]; the contribution
of each GPU is reassembled and sent to the PDA client as a
flow of still images.
 The paper is organized as follows: Section 2 presents the
proposed architecture, Sections 3 and 4 provide a detailed
description of modules server-side and client-side,
respectively. Finally, Section 5 shows a set of experimental
results and a deep evaluation of the performance.

2 The Proposed Framework
Taking into account the results achieved by research
activities carried on within the last years in the fields of
mobile local and remote rendering as well as the limits of
such solutions we started the development of the proposed
architecture, an open framework which enables highly
interactive remote visualization of OpenGL based 3D
graphics applications on mobile devices over wireless
communication channels. The core of the high-end server-
side visualization subsystem relies on a cluster-based
distributed rendering engine and allows to display
extremely realistic and complex 3D models and data-sets in
an interactive way on limited resource devices like PDAs,
Tablet PCs and smart phones within both WLAN and
WWAN environments. As side-effect, the framework we
developed can be used as a core building block in the
deployment of more complex collaborative visualization
environments thus enabling in principle the remote
management of any application requesting high-
performance visualization hardware support. In areas where
specialists are separated by distance the work-flow
efficiency can be significantly improved by collaborative
applications. For example, such applications allow users to
discuss the visualized data sharing the same view.
Furthermore, expensive experts can be consulted and
distance education or advanced training can be held (these
characteristics are extremely important in 3D medical
imaging where a set of specialists can be enabled to share
visualization of data obtained by CTs or MRIs).
Additionally, our approach provides simultaneous access to
a server application for multiple users. Thus, capabilities of
expensive hardware can be simultaneously shared by low-
cost client systems. The proposed framework for remote
visualization of complex 3D environments on mobile
devices consists in a three-tiers architecture including a
server-side component (in the following referred as
Interaction Server) controlling a distributed cluster-based
hardware accelerated rendering environment and a client
application (namely, the Mobile 3D Viewer) enabling user
interaction and providing realistic visualization
functionalities. The server-side software can be
transparently integrated within existing applications thus
enabling multiple mobile users to remotely control a variety
of graphics application based on the OpenGL libraries.

3 Serverside Remote Rendering Subsystem

3.1 The interaction server
In a remote visualization scenario, rendering is actually
performed using hardware resources of a high-end graphics
server that hosts the 3D graphics application and is
responsible for streaming visualization frames generated
by the rendering process. We based the development of our
server-side remote rendering subsystem on a software
component, the Interaction Server, which controls the

communication between the 3D graphics application
running in a distributed environment at the remote site and
the visualization interface deployed on mobile devices. By
exploiting the functionalities provided by the Interaction
Server, an OpenGL application can be transparently
controlled by simultaneous remote users in an interactive
and collaborative way.
 Basically, the internal operation logic driving the
Interaction Server can be described as follows (see Fig. 1).
A newly generated scene manipulation event on the client
mobile device triggers the submission of a command packet
describing the event to the Interaction Server over a
wireless communication link. Once this packet reaches the
Interaction Server, it is translated into a compliant semantic
and then passed on to the proper OpenGL callback
functions which in turn will adjust mapping and rendering
parameters. Then, the OpenGL directives are locally
executed, exploiting the processing capabilities available at
the rendering site. Once the rendering has been completed,
the frame-buffer is copied in the main memory. The
Interaction Server encodes the raw image data in a suitable
format for distribution to mobile devices. The
characteristics of the data format need to be tuned according
to the specific communication channel and client device
being used. Finally, encoded data are decoded and displayed
to the remote user on the mobile visualization device.

3.2 Distributed cluster-based rendering

environment
In the deployment of the rendering subsystem we exploited
a cluster-based architecture in order to distribute the
execution of OpenGL rendering commands over a cluster
of PCs. In fact, despite of recent advances in accelerator
technology, many real-time graphics applications still
cannot run at acceptable rates. As processing and memory
capabilities continue to increase, so do the sizes of data
being visualized. Because of memory constraints and lack
of graphics power, visualizations of this magnitude are
difficult or impossible to perform on even the most
powerful workstations. All these issues intrinsically
impose a limit to the degree of interactivity that can be
achieved on the mobile device. Recently, clusters of
workstations/PCs have emerged as a viable option to
alleviate this bottleneck. The necessary components for
scalable graphics on clusters of PCs have matured
sufficiently to allow exploration of clusters as a reasonable
alternative to multiprocessor servers for high-end
visualization. In addition to graphics accelerators and
processor power, memory and I/O controllers have reached
a level of sophistication that permits high-speed memory,
network, disk, and graphics I/O to all occur
simultaneously, and high-speed general purpose networks
are now fast enough to handle the demanding task of
routing streams of graphics primitives. The cluster-based
rendering sub-system that has been deployed is based on
the Chromium architecture [8,9].

Fig. 1 Sequence of operations in a remote rendering session.

Fig. 2 Layout of the proposed three-tiers architecture.

 The Chromium framework takes advantage of the
aforementioned opportunities by providing a software
architecture that unifies the rendering power of a collection
of graphics accelerators in cluster nodes, treating each
separate frame-buffer as part of a single tiled display.
Chromium provides a virtualized interface to the graphics
hardware through the OpenGL API. A generic Chromium
based rendering system consists of one or more clients
submitting OpenGL commands simultaneously to one or
more graphics servers. Each server has its own graphics
accelerator and a high-speed network connecting it to all
clients and it is responsible for rendering a part of the
output image which is later reassembled for visualization.
Existing OpenGL applications can use a cluster with a very
few modifications, because Chromium relies on an
industry standard graphics API that virtualizes the disjoint

rendering resources present in a cluster, providing a single
conceptual graphics pipeline to the clients. In this way,
even large data-set models (i.e. medical data), that could
not be otherwise interactively rendered using a single
machine, can be easily handled. The Chromium framework
follows a traditional client-server paradigm in which
OpenGL directives are intercepted by client nodes which
locally run graphics applications and manage to distribute
rendering workload to high-end processing servers. 3D
data-sets are therefore decomposed into N parts which are
rendered in parallel by N processors. The resulting planar
images are reassembled by clients which are in turn
responsible for producing the final image. In Fig. 2 the
overall architecture of the proposed remote visualization
framework is presented.

3.3 The RenderEncode module
A specific Chromium module named RenderEncode has
been designed in order to manage framebuffer data
compression which allows the generation of 2D contents
suitable for effective real-time distribution in a remote
visualization environment. The newly developed module is
responsible for reassembling tiles received from Chromium
server nodes as well as for writing reassembled frames into
the framebuffer. Additionally, the RenderEncode
incorporates MPEG video processing capabilities, thus
providing the requested support for efficient compression
of framebuffer content. In particular, by overriding the
OpenGL swapBuffers() function, the RenderEncode is
capable of extracting image data resulting from the
rendering of current frame from the framebuffer, scaling
grabbed frame to a specific resolution, converting resized
frame into YUV 4:2:0 format suitable for MPEG
processing, performing MPEG encoding of current frame
generating an MPEG ES (Elementary Stream) [10] and,
finally, passing encoded MPEG bitstream to a streaming
application (the Streaming Server). The streaming
application has been developed as a separate application
which receives contents to be streamed over a TCP
connection. This allows for the streaming application to be
run on a different machine thus limiting the overhead on
the Chromium client. In the encoding process, all typical
MPEG parameters can be adjusted in order to precisely
control bitrate and quality of the generated stream.

3.4 The Streaming Server component
Streaming of MPEG encoded frames generated by the
RenderEncode has been delegated to a specific component
in the overall architecture, named the Streaming Server,
which is responsible both for performing several pre-
processing tasks on the encoded bitstream and for streaming
the resulting MPEG video sequence to remote clients. By
keeping framebuffer encoding and video sequence
streaming separated, it has been possible to design a
Chromium module only responsible for MPEG encoding of
rendered frames and a highly specialized unit for remote
visualization oriented streaming. Encoded video frames are
streamed to remote clients using MPEG TS (Transport
Stream). MPEG TS is defined in MPEG-2 specifications
[11] and provides effective support for real-time
transmission and visualization of multimedia contents over
unreliable computer networks. In MPEG TS, essential
synchronization information usually needed in multimedia
streaming applications are passed by means of time stamps,
a sample of the encoder's local time, included in the
bitstream to allow synchronization of the decoder. In this
way, streamed data incorporate sufficient information to
carry out synchronization between encoder and decoders
and data can be streamed directly on a UDP socket without
introducing the overhead of additional protocols.
Nevertheless, in the future we expect to evaluate the effects

of the introduction of alternative synchronization protocols
(like, for example, RTP). The synchronization scheme
provided by MPEG TS allows for correct handling of out-
of-order or delayed and possibly corrupted data delivery at
the receiver. The Streaming Server is based on open-source
components and comprises three modules (see Fig. 3),
namely the Packetizer module, the MPEG-TS Multiplexer
module and the Streaming module. The first two modules
deals with pre-processing operations on MPEG encoded
frames which are necessary in order to obtain MPEG TS
data suitable for transmission, while the latter one deals
with video data transmission to remote clients.

Fig. 3 Structure of the Streaming Server component.

4 Client-side Visualization Application
In the proposed remote rendering scenario, mobile devices
running a dedicated application named Mobile 3D Viewer
only act as visualization front-end supporting user
interaction with a virtual 3D scene which is actually
produced at distance. We evaluated the remote control of
distributed 3D graphics applications on traditional, off-the-
shelf portable computers. In particular, we selected a HP
iPaq H5550 PDA and a Compaq TC1000 Tablet PC.
 The user can interact with the actual device by tapping a
pen over the display. On the PDA, a directional pad is
available, which implements the traditional keyboard arrow-
keys functionalities. Moreover, several application buttons
are available on both the devices, which can be completely
customized via software. Tablet PC device has been
selected for its higher screen resolution with respect to
common handheld devices. In this way, usability and
performance on the next generation high resolution PDAs
can be estimated. Concerning the practical implementation
of the Mobile 3D Viever visualization application, we
investigated the feasibility of the exploitation of existing
off-the-shelf software modules. However, such general-
purpose technologies may degrade the overall performances
of the system. For this reason, we decided to develop an ad-
hoc application to provide special support for accelerated
remote visualization on portable devices. At the same time,
we performed an evaluation of the programming
environment best suitable for the deployment of the client
side software. In other works, the Java programming
language was chosen to develop different frameworks for
interactive remote visualization thanks to its high portability
across different platforms. However, in this case we
preferred to adopt the native language of the platform under
consideration in order to optimize the use of the limited
available resources and speed up performances. Following a
highly modular approach, the developed mobile application

is based on three software components (see Fig. 2): the
Visualization Interface, the Frame Decoder and the Event
Generator.

4.1 The Visualization Interface
The Visualization Interface is responsible for managing user
interaction with the scene currently displayed on the mobile
device as well as with the remote 3D application: it handles
basic events generated by user input devices (i.e. pen
tapping, navigation pad, application buttons depending on
the particular device being considered) and passes them to
the Event Generator module. A series of control buttons
below the rendering area allows the user to interactively
manage a subset of the functionalities offered by the remote
OpenGL application. In the future, complete support for
application-specific commands will be provided.
Furthermore, information related to the current scene
including polygons count, volume data size and frame rate
are displayed to the user see Fig. 5 and 6). Finally, the
Visualization Interface is also responsible for supervising
the render area for framebuffer content received from the
remote server (which actually performs the rendering
operations).

4.2 The Frame Decoder
The Frame Decoder receives an encoded MPEG TS video
stream from the remote Streaming Server over a multicast
UDP channel established on a wireless link. The Frame
Decoder extracts synchronization information embedded in
the incoming bitstream, decodes compressed MPEG frame
according to the DTS time stamp, writes decoded images
into a visualization buffer and displays ready images
according to the PTS time stamp. Mobile 3D Viewer
MPEG video processing capabilities rely on a general
purpose open-source multimedia player developed within
the Videolan project [12] which is capable of displaying
MPEG TS video streams at thirty frames per seconds.
Other video-coding schemes (MPEG-2, MPEG-4) and
streaming protocol (RTP) can be used to replace current
MPEG TS based solution.

4.3 The Event Generator
Finally, the Event Generator software component is
responsible for receiving information concerning the
events generated at the user interface and converting them
in suitable commands for the remote application. Such
commands are then encoded in a format suitable for
transmission through a TCP connection over a low
bandwidth channel.

5 Experimental Results
In this Section we present two different usage scenarios
which would benefit of the proposed architecture: a
parallel volume renderer based on a commercial

application programming interface (API) used to
interactively explore 3D texture based volumetric data-sets
[13] and a general purpose surface renderer for generic 3D
scene navigation developed at Politecnico di Torino
university.
 We evaluated the effectiveness of the proposed
framework in remote 3D rendering scenarios enabling
mobile users endowed with PDA and Tablet PC devices to
simultaneously interact with the aforementioned 3D
rendering applications running on a remote hardware
accelerated high-end graphics server. Our main aim is to
prove that remote visualization based architectures like the
one presented in this paper allow for highly interactive
collaborative sharing of realistic 3D visualization sessions
among distributed mobile users regardless of the
complexity of the 3D data-set being considered. In other
words, mobile users can perceive a degree of interactivity
comparable to that they would experience in a typical local
visualization based environment.
 Since visualization frame rate and the overall latency
experienced at the remote client constitute the main
limitations of existing remote rendering architectures,
especially when considering collaborative visualization
session, an event-driven analysis system has been designed
in order to accurately quantify critical parameters of the
remote visualization system thus providing an effective
measure of the interactivity of the proposed architecture.
Therefore, for each rendered frame, a distributed
measurement environment which involves almost all the
components of the designed architecture allows to record
the amount of time needed for:
- rendering current frame (trender);
- producing a MPEG encoded frame (tMPEG);
- displaying a MPEG encoded frame to the mobile

device (tstreaming).
To provide a fully comprehensive measure of the overall
latency (tserver-client), the designed performance analysis
system is also responsible for recording the amount of time
needed for a 3D Mobile Viewer generated command to
reach the server side (tcommand). Other critical parameters are
recorded, including the frame rate at the rendering site
(fpsserver), the frame rate at the remote client (fpsclient) and
the average bitrate (bitrateclient).
 Various experiments have been conducted by varying
the size of the geometric 3D model and of the 3D texture
volume data-set. Table 1 reports measured trender, tMPEG,
fpsserver, and fpsclient in a centralized geometric rendering
based session (that is, without exploiting Chromium
acceleration) by varying the complexity of the scene. It can
be observed that the average trender strictly depends on the
polygon count of the particular rendered scene. On the
contrary, mean tMPEG is not significantly affected by the
particular scene being considered. Moreover, it has to be
noticed that, except for very low rendering times, one can
observe the same frate rate both at the rendering server
(fpsserver) and at the remote visualization site (fpsclient).

Nevertheless, a limitation on the number of frames per
second to be encoded by the RenderEncode has to be
imposed for limited complexity scenes in order to avoid
transmission channel overload and to keep the latency low
for lower rendering times. Selected threshold enables a
very high degree of interactivity in collaborative
visualization sessions.

trender (ms) tMPEG (ms) fpsserver fpsclient

12500 16 16 31.3 30.0

25000 25 17 23.8 23.8

50000 40 18 17.2 17.2

100000 64 17 12.3 12.3

200000 91 17 9.2 9.2

Table 1 Rendering time (trender), encoding time (tMPEG) and
frame rate of the rendering process on the high-end

graphics server (fpsserver) and of the video stream presented
to the mobile user (fpsclient) for different geometries with

increasing polygon count.

 From Table 1 it can be noticed that, as expected, the
rendering time per frame which is strictly coupled with the
complexity of the scene being rendered heavily contributes
in degrading interactivity of the system since frame rate at
the client side is constrained by the limited graphics
performances of the rendering host: medium and high
complexity scenes exhibit poor rendering performances
(fpsserver) which translate in unsatisfactory frame rates at the
remote client (fpsclient). We therefore repeated the same
experiments on a cluster of eight nodes each running
RedHat Linux 8.0. The nodes contain a Pentium IV 2 GHz,
a nVidia GeForce2 MX 440 graphics accelerator with 64
MB of video memory, 256 MB of main memory and a
Gigabit Ethernet network card. Our goal is to demonstrate
that interactive visualization at the remote host can be
achieved by simply removing the bottleneck on the frame
rate experienced at the rendering server (supposed available
bandwidth supports video streaming). The graph presented
in Fig. 4 shows the average frame rate for a given fixed
rendering resolution as we increase the complexity of the
geometry, that is the number of polygons per frame, from
12500 to 100000. Four curves are shown, corresponding to
a cluster of 1, 2, 4, and 8 nodes. Performances in the single
server-based Chromium configuration are slightly lower
than those presented in Table 1. That is mainly due to the
fact that the use of the distributed rendering middleware
provided by Chromium introduces a worsening of the
performances due to the overhead related to tiles extraction,
transmission and reassembly. Nevertheless, by increasing
the number of rendering nodes, one can observe interactive

rendering rates even with significantly complex geometries.
In particular, using 8 servers, the 100000 polygons scenes
can be rendered at about fifty frames per second on the
server side thus enabling a 30 frames per second
visualization at the mobile client. In this way, a local-like
interaction with highly complex 3D scenes can be
experienced by remote mobile users.

Fig. 4 Each curve shows the relationship between scene

complexity and performance for a given number of
rendering servers.

 Fig. 5 and 6 show two visualization session examples by
using a PDA as remote client. A medical model is inspected
by the user in Fig. 5, where it is shown both the
visualization on the handheld device and the rendering on
the console of the remote cluster. Control buttons below the
rendering area are visible in Fig. 6 as well as information
concerning the frame rate and the number of polygons.

Fig. 5 A medical model is displayed both on the mobile
client and on the console of the remote rendering cluster; a

GPRS wireless connection is used in this case.

Fig. 6 A set of icons help the user during visualization
sessions. It can be noticed the frame rate value (about 27.3

fps) and the number of polygons of the analysed object
[14] (over 200.000 in this case).

6 Conclusion and Future Work
Real-time visualization of extremely complex 3D scenes on
portable devices is still considered a challenging task.
 It is predictable that interactive rendering in mobile
environments will evolve over the time and ever more
sophisticated 3D graphics hardware acceleration supports
will be introduced in next generation mobile appliances
allowing users to navigate ever more complex and realistic
3D environments. Nevertheless, remote visualization
represents a viable alternative for high-quality interactive
3D visualization in mobile environments since today. The
ambitious application framework we have presented in this
paper represents a crucial step in our ongoing effort to build
a comprehensive client-server 3D rendering framework
enabling simultaneous mobile users to interact with
graphics intensive OpenGL-based applications without the
user noticing that most of the processing is actually done on
a remote and possibly distributed server.
 The current platform allows to display extremely
realistic and complex 3D data-sets in an interactive way on
limited resource devices such as PDAs and TabletPCs and
requires only minimal efforts to port any existing OpenGL
3D rendering program into a mobile scenario. The proposed
implementation uses MPEG and MPEG TS video
technologies to distribute a video stream embedding 3D
frames generated by surface and volume rendering
applications on a high-end rendering server and it enables
collaborative real-time visualization at interactive frame
rates over both local and geographic wireless networks on

mobile devices. Future work will be devoted to the
evaluation of alternative video codecs and synchronization
protocols in order to achieve higher compression ratios and
lower latencies. This will translate in the possibility of
providing real-time performances even on very low
bandwidth transmission channels setting practically no
limits to the complexity of 3Ds scene to be visualized in
mobile environments.

7 Acknowledgements
This project is supported by the Ministero dell'Istruzione
dell'Università e della Ricerca in the frame of the PRIN
2004 project (Prot. 2004095094): “Studio e sviluppo di un
sistema per il controllo e il monitoraggio in tempo reale del
territorio per la prevenzione degli incendi”.

References:
1. PocktGL website: http://www.pocketgear.com
2. OpenGL ES website: http://www.khronos.org/opengles/
3. M3D website: http://www.jcp.org/en/jsr
4. Silicon Graphics, Inc OpenGL Vizserver website:

http://www.sgi.com/software/vizserver/
5. Stegmaier, S., M. Magallón and T. Ertl, T. A Generic

Solution for Hardware-Accelerated Remote
Visualization, Joint Eurographics - IEEE TCVG
Symposium on Visualization, 2002, pp. 87-94.

6. Engel, K., O. Sommer and T. Ertl. A Framework for
Interactive Hardware Accelerated Remote 3D-
Visualization, Joint Eurographics - IEEE TCVG
Symposium on Visualization, 2000, pp. 167–177.

7. Lamberti, F., C. Zunino, A. Sanna, A. Fiume and M.
Maniezzo. An Accelerated Remote Graphics
Architecture for PDAs, Proc. of ACM/SIGGRAPH
Web3D 2003 Symp., 2003, pp. 55-61.

8. Humphreys, G., M. Houston, R. Ng, R. Frank, S. Ahern,
P. Kirchner and J.T. Klosowki. Chromium: a stream-
processing framework for interactive rendering on
clusters, In Proceedings Siggraph, 2002, pp.693–702.

9. Chromium: http://sourceforge.net/projects/chromium/
10. MPEG-1 - ISO/IEC 11172 - Coding of moving pictures

and associated audio for digital storage media at up to
about 1,5 Mbit/s.

11. MPEG-2 - ISO/IEC 13818 - Generic coding of moving
pictures and associated audio information.

12. Videolan project website: http://www.videolan.org
13. Silicon Graphics, Inc OpenGL Volumizer website:

http://www.sgi.com/software/vizserver/ Volumizer
14. Cyberware website: http://www.cyberware.com

