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Abstract: - Systems design has been an iterative process which involves several steps such as modelling, logical analysis, performance evaluation and implementation. If each step requires different model, it would be a major hurdle to a seamless design process. Therefore a unified modelling framework which provides a basis to specify models at different steps in common semantics is desirable. In our methodology, an implementation model is reduced to an observational equivalent model through a series of stepwise compositions and minimizations. This incremental approach alleviates the state explosion problem in a verification process. Once a final operational CDEVS model is obtained, it can be verified by an equivalence checking algorithm. The proposed approach is much promising when analyzing large systems. If a component should be changed due to a design error, the overall composed model can be rebuilt by just composing the changed model with the unchanged ones together.An example of development of alternating bit protocol within the framework demonstrates effectiveness of the methodology.
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1
Introduction

Man-made dynamic systems, in which a set of processes run concurrently in a cooperative manner, are no longer specified and then analyzed by classes of differential equations. The states of such systems are changed in response to occurrences of discrete events which take place at any time. Examples of such systems include computer networks, manufacturing systems and various forms of high-level controller systems.

These concurrent systems might have safety critical abnormalities such as deadlock, race condition or violation of the mutual exclusive access that might result in enormous damages. Thus, the importance of proof of functional correctness of these systems arises. Formal models play an important role in such proof due to the fact that models are manipulated mathematically, thereby making it possible to develop automated tools. Although formal verification of large-scale systems is still practically impossible, automated analysis tools such as [1] have been successfully applied to some limited problems. Development of such tools to solve general problems is still left as an open problem.
In addition to the logical analysis, described above, performance evaluation and virtual prototyping are also performed in the development stages of a concurrent system. Thus a unified modelling framework in which a formal model is used for logical analysis, performance evaluation and virtual prototyping is most desirable. However, many formal models are only well suited in the stage of logical analysis; they could not be applied to the other stages such as performance evaluation or virtual prototyping. Similarly, many simulation models are adequate in the area of performance evaluation but inadequate for that of the formal verification as they lack formal semantics.

However, the DEVS formalism, which was originally designed for modelling and simulation of discrete event systems, can also be used for logical analysis as it has sound operational semantics. In spite of various research activities on DEVS have been made, which will be described shortly at following section, still many of the issues need to be studied. Formal verification is such an issue. Therefore the development of an automated verification methodology for DEVS models is the main objective of this paper.
2
Extension of DEVS Formalism
The DEVS (Discrete Event Systems Specification) formalism can specify a dynamic system at any of the behavior-structure specification levels [2]. Although models at different aspects can be expressed in the DEVS formalism a performance-oriented DEVS model is most commonly used one. The DEVS formalism defines two classes of models: atomic model and coupled model. Operationally, an atomic DEVS model is a timed state transition mechanism that operates over time base with two transition modes: an internal means of self scheduling of events and a means of responding to external events. 
2.1 Communicating DEVS (C-DEVS) Formalism

The C-DEVS formalism is a modification of the DEVS formalism for logical/behavior analysis of a discrete event system. The analysis usually employs a set of component models with time advances unspecified (untimed). Interaction between such component models reveals more complex operational behavior than that of a time-specified (timed) discrete event model. Actually, analysis of an untimed discrete event model requires a generation of a set of all possible state trajectories induced by interactions between components, each having its own untimed state transitions. Such generation requires a sound semantics for communication and synchronization between untimed components. Since no time advance is specified for each state in an untimed component, behavior of a composite model may be non-deterministic. 
There are two cases of such non-determinism: internal state transition and output generation. State transition non-determinism occurs when two components have an identical output with which different internal transitions are performed. Output generation non-determinism occurs when a state has more than two outputs to be generated. For the former, internal transition function of a standard atomic DEVS needs to be changed to internal transition relation. For the latter, select function of a standard coupled DEVS is left undefined. Introduction of such non-determinism is intentional to explore all possible state trajectories of a composite untimed model. In fact, state trajectories generated by a non-deterministic untimed model include all those generated by a deterministic timed model. Based on the above discussion we now defines the C-DEVS formalism for logical/behavior analysis, which again has two model classes: atomic and coupled. An atomic C-DEVS, C-AM, is defined as:

C-AM = < X, Y, Q, (ext, Tint, >
, where

X : a set of input events;

Y : a set of output events;

Q : a set of states;

(ext. : Q ( X ( Q, an external transition function;

int ( Q ( (Y( {( }) ( Q,, an internal transition relation,
 where ( means no external output event is generated.
Note that there are differences between DEVS and C-DEVS definitions in an atomic model. First of all, the definition of C-AM has no time advance function to leave sojourn time at each state unspecified. Secondly, the definition has no explicit output function. Instead, output generation is included in the internal transition relation for simplicity in composition operation for logical analysis which we shall discuss later. Finally, internal transition function is modified into internal transition relation for modeling of non-determinism in the transitions. 

Definition of a coupled model within the C-DEVS formalism, a C-CM, is similar to a coupled DEVS as:
C-CM = < X, Y, D, {Mi}, EIC, EOC, IC >

, where
X, Y, D, EIC, EOC, IC : the same as DEVS formalism;

Mi : an atomic C-DEVS model, C-AM.

Note that there are two differences between C-DEVS and DEVS formalisms in coupled model definition. One is that a component in C-CM can be only an atomic C-DEVS model. The other is that no select function is defined in C-CM as discussed earlier. The following section introduces composition and minimization operations defined on the C-DEVS models for logical verification.

Composition of two atomic C-DEVS models requires an accurate semantics for communication and synchronization between the two, which is not defined in coupled C-DEVS. The coupled C-DEVS only defines static couplings between the two. Heymann classified the interactions between two processes into three categories: strict synchronization, broadcast synchronization and prioritized synchronization [3]. 

Strict synchronization restricts the shared events to be either executed by both processes concurrently or by none. In broadcast synchronization each process can generate their events for execution and the other process will participate in their execution synchronously if it is ready to accept the events. Otherwise, only initiating process executes the event while the other process stays as it was. For prioritized synchronization, refer to [3]. From the above classification, the interaction between two C-DEVS models conforms to the broadcast synchronization.
3
Verification Framework
Verification is a process of proving equivalence between system operation and system requirement. Generally, four elements are involved in verification process: property specification, operational specification, conformation criteria, and checking algorithm.

3.1 Compositional Verification
Our verification method is a single specification approach in which both property and operational specifications are modeled by the C-DEVS formalism. More specifically, property specification is modeled as an assertional C-DEVS model, and operational specification is modeled as an operational C-DEVS model. Thus, verification is to check if the operational model meets property specified in the assertional model.

Since an operational C-DEVS model consists of component C-DEVS models an efficient means to compose them into an equivalent C-DEVS model is to be devised. Events extraction is an operation to extract all events in a given C-DEVS model. Such events constitute an interest events set (IES), which only related to interested properties to be verified. Thus, IES can be used to reduce a C-DEVS model to a simplified one that is equivalent to the original one from the viewpoint of interested properties.

Composition of two operational C-DEVS models into one employs communication semantics of broadcast synchronization between the two. Composition is followed by minimization. Minimization is to find observational equivalence relation. Composition-minimization is performed for each pair of atomic C-DEVS models in an incremental manner until a composite operational C-DEVS model is obtained. Such a series of the composition-minimization operations prevents the verification process from the state space explosion problem. Once a final operational C-DEVS model is obtained, observational equivalence relation is used as a conformance criterion to check equivalence between the operational C-DEVS model and the assertional C-DEVS model. Finally, the checking algorithm in our method is an implementation of observational equivalence relation based on Paige and Tarjan’s partition algorithm [4]. We now explain composition, minimization, and observational equivalence relation in details.
3.2 Composition 
Consider a coupled C-DEVS model which consists of a set of atomic C-DEVS models and the Coupling Scheme (CS) of three coupling relations, EIC, EOC, and IC. Composition operation is applied to a pair of atomic C-DEVS models within a coupled C-DEVS model. That is, composition of two atomic models needs specification of each, along with coupling scheme between two. Formally, a composite model of two atomic C-DEVSs M1 and M2, denoted by M1||M2, is an atomic C-DEVS defined as:

[Definition 3.1] Composition

Given a coupled C-DEVS model including two atomic C-DEVSs M1 and M2, composition of M1 and M2, denoted by M1 || M2, is defined as:

       M1 || M2 = < X, Q, Y, (ext, Tint,>

,where 


X ( X1 ( X2;
Y ( Y1 ( Y2;
Q ( Q1 ( Q2;
(ext. : Q ( X ( Q;

int ( Q ( (Y( {( }) ( Q,,
with the following constraints:

Xi, Yi, Qi are the input events set, output events set and states set of Mi, respectively.

(ext is defined as:
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Tint is defined as:
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In above definition, 
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 is a transition relation, meaning that the state s could accept an input event x to transit into s'. 
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 denotes a spontaneous transition relation from the state s into s' with an output event y to be transmitted to the external environment. 
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 means that there is no transition relation with respect to the corresponding event on state s.

3.3 Minimization 
Minimization is an operation to collapse the equivalent states into a representative state. The equivalent states exhibit observable behaviors equivalent to each other. Minimization operation consists of two steps. The first is an event internalization process. In the step, an output event of a component is renamed as an internal hidden event ( if it has no interaction with an external world. The second step is an aggregation of the observational equivalent states. Observational equivalent states are defined as follows.

[Definition 3.2] Observational Equivalence Relation

A binary relation ( on Q = { s1, s2, …, sn } is said to be an observational equivalence relation if and only if the followings hold.
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 in above definition means zero or more internal transition might happen. The equivalence relation is reflexive, symmetric and transitive. The above definition is different from that of weak bisimulation relation defined in CCS[5]. This is because communication semantics in CCS is strict synchronization[3], but that in C-DEVS is broadcast synchronization.
[Definition 3.3] Observational Equivalence States

Two or more states are said to be equivalent if and only if they have equivalence relations to each other. 
[Definition 3.4] Observational Equivalence

Two or more C-DEVSs are said to be equivalent if their initial states are equivalent to each other.

4
Example
To show the DEVS-based design methodology within the proposed framework, design of Alternating Bit Protocol (ABP) is to be considered. ABP is a communication protocol for secure transmission of the messages from a source to a destination. Generally the existing communication media is not perfect. Thus, there always exists such possibility that messages generated from the sender might be lost, duplicated or corrupted before arriving to the destination. Thus a secure communication protocol is needed to ensure a correct transfer of the messages between the two entities. This section exemplifies logical analysis 
4.1 System Description 
The overall system model of ABP consists of eight atomic models. The Sender delivers a message through the media Trans, then the Receiver acknowledges through the media Ack. We shall assume that the Trans line may lose or duplicate messages (but not corrupt) and the Ack line may lose messages. To determine whether the message is lost or not, both the Sender and the Receiver are notified by a timeout event if no message is arrived in a specified time interval. Once a timeout event is notified, retransmission is made assuming that a message transmitted previously has been lost. Messages are sent tagged with a bit 0 and 1 alternatively, and also the acknowledgements are constituted of the bits. Details of such description can be found in [5].

4.2 Incremental Analysis 
Generally, properties to be verified are classified into two types: safeness property and liveness property. Safeness says that something bad will never happen; liveness means that something good will eventually happens. Deadlock freedom is an example of safeness property. The following example will verify that the ABP system holds the liveness property by using the proposed verification method. Recall that the method employs a single language approach. Thus, both assertional model and operational model are C-DEVS models. 
4.2.1
Operational C-DEVS Modeling 
Operational C-DEVS modeling requires details knowledge of ABP to be modeled. Here, we present only sender model for the length’s limitation. Details of component models can be found in [5]. 
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Fig. 1 Atomic C-DEVS Model: Sender
4.2.2
Assertional C-DEVS Modeling 
A desired behavior of ABP is represented by a high level conceptual C-DEVS model as shown in Figure 2(a) in which four actions are repeated in a cyclic manner. The message !msg means generation of a new message to be sent. “Transferring action” denotes the repetitive actions to safely transmit the message to the receiver. The message !deliver represents an acceptance of the message by Receiver. Finally, the !done message is to notify that all trials of Sender to transmit the previous message have been completed.

A property of the ABP system could be constructed from the high level conceptual model. One such system property may be liveness, “a message sent by a sender will be eventually delivered to a receiver”. This property could be specified as an assertional C-DEVS model depicted in Figure 2(b). The set of events associated with the property in the C-DEVS model is called IES (Interest Events Set) which is {!msg, !deliver}in this example. IES is used in a series of composition-minimization processes to reduce an operational C-DEVS model into a simplified one by using observationally equivalent relation.
4.2.3
Incremental composition and minimization 
A series of composition-minimization operations transforms the operational model into the smaller one shown in Figure 3. Note that the operational C-DEVS model of Figure 3 has an internalized event ( which is invisible outside, thus not being considered in verification using observationally equivalent relation. 
4.2.4
Conformation Checking
The proposed verification method employs observational equivalence relation as a conformation criterion. Thus, proof of a given property of a system is a claim that an assertional C-DEVS model is observationally equivalent to an operational C-DEVS model. In this example, the liveness property of ABP is verified since the assertional C-DEVS model of Figure 3(b) is observationally equivalent to the reduced operational C-DEVS model of Figure 4. 

From the above, it is guaranteed that whenever an event !msg happens, the event !deliver eventually happens in ABP. From the operational C-DEVS model of Figure 4 another property of deadlock-free can be easily verified, for each state of the model automatically transits a next state without an external event.
5
Conclusion
In summary, a compositional verification method has been proposed for logical analysis which verifies properties as well as operational correctness of a system to be designed. The method has employed a single formalism approach in which both assertional and operational specifications are modeled by the C-DEVS formalism.
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Fig. 2 Desired Behavior and Assertional Model in C-DEVS. (a) Desired High Level Behavior;
(b) Assertional Model.
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Fig. 3 Composition and Minimization    (a) Composed Model. (b) Minimized Model.
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Fig. 4 Finally Reduced Operational C-DEVS Model

To demonstrate the effectiveness of the proposed framework, a design example of logical analysis for ABP has been presented. The example has verified such properties of ABP as liveness and deadlock-free
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