
Solving 3-SAT Using Constraint Programming
and Fail Detection

	GARY YAT-CHUNG WONG

Dept. of Electronic Engineering
City University of Hong Kong
Tat Chee Ave, Kln, Hong Kong

HONG KONG

	K. Y. WONG

Computer Studies Program

Macao Polytechnic Institute

Av. de Luis Gonzaga Gomes

MACAO

	K. H. YEUNG
Dept. of Electronic Engineering
City University of Hong Kong
Tat Chee Ave, Kln, Hong Kong

HONG KONG

Abstract: - Propositional satisfiability problem (SAT) is a well-known NP-complete problem. It can be categorized as NP-complete because it has a phase transition point between satisfiable or unsatisfiable. Instances within the phase transition region are hard to solve. To reduce computation time in this region, we designed and implemented a Fail Detection (FD) technique in solving 3-SAT. To simplify implementation procedure, constraint programming is used as the core of the solver because a set of utility is already well developed. As we concern about the robustness of our technique, a large-scale experiment with wide spectrum of random generated 3-SAT instances as test cases is run. To figure out the efficiency of our technique, existing approaches such as Davis-Putnam procedure (DP) and Jeroslow-Wang heuristic used in Davis-Putnam procedure (DP+JW) are tested together with Fail Detection technique (i.e., DP+FD and DP+JW+FD) using the same set of random generated uniform 3-SAT instances. Statistical results show that our DP+JW+FD approach is able to gain up to 63% reduction in computation complexity compare with DP and the effect of hard problem in phase transition region is also significantly reduced.

Key-Words: - propositional satisfiability problems, uniform random 3-SAT, phase transition, constraint programming, fail detection.

1 Introduction

Propositional satisfiability problem (SAT) [12] is closely related to Artificial Intelligence because it can be used for deductive reasoning and many other forms of reasoning problems such as graph coloring, diagnosis, planning [7, 8, 14], etc. Therefore developing SAT solving methods are essential to AI applications.

However, SAT is defined as NP-complete problem as it contains phase transition point between satisfiable or unsatisfiable, which means that instances within the phase transition region are hard to solve [1, 12]. To reduce this phase transition effect, we designed and implemented a Fail Detection (FD) technique in solving 3-SAT. A huge set of uniform random 3-SAT [14] is used to test our technique. Fixed clause length 3-SAT is used rather than vary clause-length because it was shown to be more difficult to solve when the problem size are similar [12].

To simplify implementation procedure, Constraint Programming (CP) [9, 15] is used as the core of the solver and JSolver [2], the Java Constraint Programming library is used. By use of demon in JSolver, we can monitor the change of variables and trigger value removal routines according to our Fail Detection technique (detail in Section 3). By use of demon, we do not need to check every variable when making decision on assigning value to variable, so search speed can be improved. In terms of CP, Fail Detection can be considered as a kind of higher degree of consistency maintenance technique [9, 11, 15].

Concerning the robustness of our technique, a large-scale experiment with wide spectrum of random generated 3-SAT instances as test cases is run. Totally 144,000 tests have been performed to evaluate four different techniques in solving 3-SAT. The techniques are Davis-Putnam (DP) procedure [3], Jeroslow-Wang heuristics (JW) used in DP [6], and Fail Detection added versions of these two approaches (i.e., DP+FD and DP+JW+FD). As the search method of DP is a kind of simple backtracking, which is similar to chronological backtracking in constraint programming, DP can be implemented by constraint programming directly in addition with new constraint for the unit propagation rule and ordering heuristic for split rule, therefore comparison can be done on the same paradigm and guarantee the fairness.

In following Sections, we will first go through the background of SAT, DP, JW and Constraint Programming. After that detail of design and implementation of the basic and Fail Detection technique in constraint programming will be described in Section 3. In Section 4, we will have a detail empirical results analysis and statistical results show that our DP+JW+FD approach is able to gain up to 63% reduction on computation complexity compare with DP. Besides, the effect of hard problem in phase transition region is also significantly reduced. Finally, this paper closes with future works and conclusion.

2 Background

Propositional satisfiability (SAT) [12] is a problem that consists of a set of clauses (over a set of boolean variables. A clause is a disjunction of literals (for example: (variable1 or variable2 … variableN)), variable in a clause can be negated. And a set of clause represents a conjunction of clauses (for example: (clause1 and clause2 … clauseL)). It is also known as Conjunctive Normal Form (CNF). A SAT can be described by three parameters, which K represents the clause size, N represents the number of variables and L represents the number of clauses. With value assignment, a SAT returns either satisfiable or unsatisfiable.

DP procedure [3] is the most popular way to solve SAT, almost all empirical work on SAT testing use it as the core of solver, and in addition with heuristics. DP performs a backtracking depth-first search in search space by assigning truth-values to variables and simplifying the input set of clause. Unit propagation rule in DP ensure a unit clause must be satisfied because clauses are conjunctive. The only variable in unit clause is immediately assigned the truth-value that satisfies it, the clause set is then simplified. The assigned variable may lead to new unit clauses; propagation goes on until no more unit clause produced. Split rule in DP is naive because it assigns value to variable arbitrarily (variable is selected in clause order). Therefore heuristic is usually added, the most popular SAT heuristic is MOM heuristic, which involves branching next on the variable having Maximum Occurrences in clauses of Minimum Size, such as JW heuristic [6]. This heuristic can be implemented by assigning score to literals and split rule is then applied to the literal with highest score. This heuristic exploits the power of unit propagation because it increases the chance to reach an empty clause.

As we use constraint programming to simplify the implementation of our Fail Detection (FD) technique, we have to convert DP and JW to constraint programming structure to have a fair comparison, fortunately the structure of constraint programming is similar to DP and the process is quite straightforward.

Constraint Programming [9, 15] techniques are used to solve problems after they are modeled as Constraint Satisfaction Problems (CSP). A CSP [10] consists of a set of variable, each of them is associated with finite domain of possible values, and a set of constraints, which restrict the combination of value that associated variables can take. And the goal in CSP solving is to find a consistent assignment of values to the set of variables so that all constraints can be satisfied simultaneously. Therefore, SAT can be considered as a subset of CSP, which consists of Boolean variables. Constraint Programming can be divided into three parts; they are search methods, problem reduction and ordering heuristics [4, 5]. The most popular search method in constraint programming is backtrack-search, which assigns value to variable one by one, each assignment can be considered as a choice point. If a value to variable assignment causes fail; then backtrack to last choice point and try another value in that fail variable. And this search method is the same as DP. In constraint programming, constraints are responsible to prune search space (problem reduction) to maintain consistency of problem. Many methods are developed for problem reduction, such as arc-consistency [10, 11, 13, 16]. And Unit Propagation in DP can be considered as a constraint which responsible to maintain the consistency of a clause. Finally, ordering heuristics include variable and value ordering; therefore split rule in DP and JW heuristics can be considered as a kind of ordering heuristic. In this project, we will implement DP and JW in a constraint programming way, and Fail Detection (FD) will be added for performance comparison.

3 Methodology

As DP and JW heuristics can be found in many literatures [3, 6], this Section will focus on our Fail Detection (FD) approach. The aim of Fail Detection (FD) is to remove assignment that will cause fail in any condition before unit propagation and variable selection. In our implementation (in current stage), there are three cases of FD, two of them are dynamic and one is static. In the following, we will first explain the dynamic cases.

Case 1: When there exists two clauses that both contain variables v and its negation ~v, and the remaining two variables are the same (say, a and b), i.e. {(v or a or b) and (~v or a or b)}. Then if a and b are both assigned to false, it implies that (v and ~v) must be true, which is tautology and fail to solve. Therefore, a and b should not be assigned to false simultaneously, in other words, two fail detection rules for value removal can be generated in this case:

· If (a is assigned to false),

then (b should assigned true)

· If (b is assigned to false),
then (a should assigned true)
Besides, if the value is fail to be assigned (for example: b or a already assigned to false), then fail is detected and backtrack in advance, so the search can be speed up.

Case 2 is similar to Case 1: when there exists two clauses that both contain variables v and its negation ~v, and one of the two remaining variables are the same (say, a), i.e. {(v or a or c) and (~v or a or d)}. Then if a, c and d are assigned to false, it implies that (v and ~v) must be true, which is tautology and fail to solve. Therefore, a, c and d should not be assigned to false simultaneously, in other words, three fail detection rules for value removal can be generated in this case:

· If (c and d are assigned to false),

then (a should assigned true)

· If (a and c are assigned to false),

then (d should assigned true)

· If (a and d are assigned to false),

then (c should assigned true)

The implementation of Case 2 is similar to Case 1; we only have to add one more trigger condition to the demon to achieve it.

Case 3 is a static case. As see in Case 1, we may setup some rules associate with variables. For example, If (a, true), then (b, true). Note that, it is possible to have the following rules together: (1) If (a, true), then (b, true) and (2) If (a, true), then (b, true). As (b, true) and (b, false) is tautology and will never occur, therefore (a, true) should be removed from the domain of a. And Case 3 is used to handle this situation.

As FD is a method for faster propagation, therefore it is possible to use FD together with the basic split rule and JW heuristic, in next Section, we will compare the performance of these approaches (i.e. DP, DP+FD, DP+JW and DP+JW+FD).

4 Empirical Results Analysis

This Section reports the results of running the popular SAT Solving algorithm: DP and DP+JW together with their hybrid with our Fail Detection (FD) technique. A huge set of uniform random 3-SAT [14] instances is generated for this experiment in following way: By given number of variables N and number of clauses L, an instance is produced by randomly generating L clauses of length 3. Each clause is produced by randomly choosing a set of 3 variables from the set of N available and negating each with probability 0.5. Besides clause is not accepted if it contains multiple copies of same variable or its negation (which is tautology). We have done two set of experiments including N=50 and N=75. The ratio of clauses-to-variables (L/N) is varied from 0.2 to 6.0 in step of 0.2. Each sampling point represents result of 1000 and 200 experiments for N=50 and N=75 respectively (as runtime of N=75 is much longer than N=50, sampling rate is reduced). Each instance is solved by four different techniques including DP, DP+FD, DP+JW and DP+JW+FD, i.e. total 144,000 tests have done. In this Section, we will focus on the statistical results by N=50, since the sampling rate is higher and should be more accurate. Data obtained by N=75 are very similar to N=50 case and will not be shown in this paper.

In the following, we first consider the performance of the four different methods (DP, DP+FD, DP+JW and DP+JW+FD) using number of branches and process time required for the wide spectrum (L/N = 0.2 to 6 with step = 0.2) 3-SAT problems with N=50.

	[image: image1.emf]0

20

40

60

80

100

120

140

160

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5 5.6

clauses-to-variables ratio(L/N)

Average no. of branches

DP

DP+FD

DP+JW

DP+JW+FD

a) L/N against average number of branches
	[image: image2.emf]0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5 5.6

clauses-to-variables ratio (L/N)

Time (sec)

DP

DP+FD

DP+JW

DP+JW+FD

b) L/N against average solving time

Fig. 1 Performance comparison (N=50, uniform random 3-SAT)
	
	Average number of branches
	Average solving time

	
	DP
	DP+FD
	DP+JW
	DP+JW+FD
	DP
	DP+FD
	DP+JW
	DP+JW+FD

	Mean
	55.74
	40.44
	24.35
	20.86
	0.22
	0.15
	0.14
	0.12

	S.D.
	43.69
	26.07
	9.31
	6.15
	0.25
	0.17
	0.13
	0.11

	
	Average number of branches
	Average solving time

	mean
	DP
	DP+FD
	DP+JW
	DP+JW+FD
	DP
	DP+FD
	DP+JW
	DP+JW+FD

	Reduced
	0
	0.2
	0.56
	0.63
	0
	0.29
	0.34
	0.44

	% reduced
	0
	27.44
	56.31
	62.57
	0
	28.51
	34.15
	44.08

	
	Average number of branches
	Average solving time

	S.D.
	DP
	DP+FD
	DP+JW
	DP+JW+FD
	DP
	DP+FD
	DP+JW
	DP+JW+FD

	Reduced
	0
	0.40
	0.79
	0.86
	0
	0.30
	0.47
	0.57

	% reduced
	0
	40.33
	78.68
	85.92
	0
	30.17
	46.82
	56.97

Fig. 2 Mean and Standard Deviation (of Fig. 1) comparison

In Fig. 1, all four methods show a bell-shape graph with different peak. As explained in [12], it is because problems in between under- and over-constrained problems are much harder because they have relatively few (if any) satisfying assignments, but the empty clause will only be generated after assigning values to many variables, resulting in a deep search tree. And the region between satisfiable and unsatisfiable is what we called phase transition, which is hard to solve and the phase transition point (the peak) is the 50% satisfiable point.

However, as observed in Fig. 1a) our DP+JW+FD hybrid approach has great improvement on reducing the average number of branches in the phase transition region. To study the efficiency of different methods, we have computed their mean and standard deviation in whole tested spectrum (as seen in Fig. 2 above).
In terms of average number of branches, fail detection (FD) able to gain up to 27% of reduction, when compared to the mean of average number of branches of DP. It is not as good as the 56% reduction of DP+JW; it is mainly because pure DP and FD cannot exploit the power of unit propagation. However combining DP+JW and Fail Detection, we gain up to 63% of reduction. That means on average our hybrid approach has better performance. To compare the effect of hard to solve in phase transition region, we also compute the standard deviation of the four different methods (S.D. is used because the difference of this approach is mainly happen in phase transition region, therefore the deviation obtained for the whole graph can reflect the difference in phase transition region).

	[image: image3.emf]0

5

10

15

20

25

30

35

40

45

50

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5 5.6

clauses-to-variables ratio (L/N)

Average no. of branches

DP+JW

DP+FD+JW

a) L/N against average number of branches
	[image: image4.emf]0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5 5.6

clauses-to-variables ratio (L/N)

probability

prob(SAT)

b) probability of satisfaction

Fig. 3 DP+JW versus DP+JW+FD (N=50, uniform random 3-SAT)
As seen in Fig. 2, the percentages of standard deviation reduced compare with DP are 40%, 79% and 86% for DP+FD, DP+JW and DP+JW+FD respectively. That means the hybrid approach is the best to reduce the hard to solve in phase transition region effect. It seems that the performance of DP+JW as good as DP+JW+FD, at the end of this Section, we will have a more detail discussion on this issue, before that we go through the statistic of average solving time first.

In terms of average solving time, there are two main differences in average number of branches. The first difference is the value of hard problem (L/N>5) is relatively higher than average number of branches (see Fig. 1b), it shows that the overhead of backtracking is large (Although the number of branches near to easy problems, computation power has spent to backtracking). The second difference is the percentage gain of reduction is not as high as the number of branches. It is mainly because of the computation overhead of Fail Detection, however the hybrid approach (DP+JW+FD) can still have up to 44% of reduction in average computation time compare with DP. Considering standard deviation, the percentage reduces is up to 57%.

Comparing the percentage reduced in average number of branches and average solving time, we found that, although there is overhead in fail detection, the overhead is not large since the hybrid approach still has great improvement in terms of mean and standard deviation.

As mentioned in previous paragraph, it seems that DP+JW perform as well as DP+JW+FD. In the following, we will discuss in details the difference between DP+JW and DP+JW+FD. The mean of average number of branches of these two series is plotted again in a larger scale. From Fig. 3, we discover that DP+JW+FD becomes significant when solving instances around L/N=2.2 (Fig. 3a), which is a bit earlier than started to have non-solvable problem around L/N=3.4 (Fig. 3b). Because fail detection is aim on reduce conflict, it means that sub-problems started to have conflict at L/N=2.2. The significance continue to increase until L/N=4.3, which is the 50% satisfaction point, after that the significance is a bit reduced and keep constant improvement from DP+JW after L/N=5. Comparing the statistical data of these two approaches, DP+JW+FD is 14.3% better in average number of branches and 15.1% faster in computation time. Although 15% is a moderate improvement, the main point is, unlike heuristic, Fail Detection still has room for improvement. In other words, we can have more precise fail detection algorithms added to improve the search. For heuristic, we can only use one heuristic in each search and the improvement is limited.

5 Future Works

In programming level, the first improvement is on code optimization. In our implementation above, demon execute in three cases: domain is modified, range is modified and variable is instantiated. But for boolean variable, the execute condition can be simplified to variable is instantiated only and decrease in condition checking can help to improve the computation time. Besides, we have started to design and implement a more precise fail detection method for 3-SAT, which is target on reducing the peak of the 50% satisfaction point (the phase transition region). After that, more real world applications will be tested with our approach. Besides we will compare existing methods with our approach using more instances (with larger N). Finally, we will work on the fail detection methods for higher degree of propositional satisfiability problems (K-SAT, for k > 3).

6 Conclusion

This paper describes our Fail Detection (FD) method use in solving 3-SAT, a large-scale experiment has used to prove the efficiency of our approach. And statistical results show that, by the use of the hybrid algorithm DP+JW+FD, we are able to gain up to 63% reduction of computation complexity. Experiments also show that the overhead of our FD method is small and is able to reduce the effect of hard problem in phase transition region, because FD is most efficient at the 50% satisfaction point (which is L/N=4.3).

Acknowledgement:

This research is fully supported by Macao

Polytechnic Institute Research Grant.
References:

[1] P. Chesseman and Kanefsky Bob and Yaylor, William M. “Where the Really Hard Problems Are.” In Proceedings IJCAI-91, pages 163-169, 1991

[2] H.W. Chun, "Constraint Programming in Java with JSolver", in Proceedings of the First International Conference and Exhibition on The Practical Application of Constraint Technologies and Logic Programming, London, April 1999.

[3] M. Davis and H. Putnam “A computing procedure for quantification theory.” J. Assoc. Comput. Mach., 7, pages 201 – 215, 1960

[4] R. Dechter and J. Pearl, “Network-Based Heuristics for Constraint-Satisfaction Problems,” In Search in Artificial Intelligence, eds. L. Kanal and V. Kumar, pp. 370-425, New York: Springer-Verlag, 1988.

[5] E. Freuder, "Backtrack-Free and Backtrack-Bounded Search," in Search in Artificial Intelligence, eds. L. Kanal and V. Kumar, pp. 343–369, New York: Springer-Verlag, 1988.

[6] R.E. Jeroslow and J. Wang, “Solving propositional satisfiability problems”. Annals of Mathematics and AI, 1, p. 167-187, 1990

[7] H. Kautz and B. Selman, “Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search.” In proc. AAAI-96, pages 1194--1201, 1996

[8] H. Kautz, D. McAllester and B.Selman, “Encoding Plans in Propositional Logic.” In proc. KR-96, pages 374--384, 1996

[9] V. Kumar, “Algorithms for constraint satisfaction problems: A survey,” AI Magazine, vol. 13, no. 1, pp. 32-44, 1992.

[10] A.K. Mackworth, “Consistency in networks of relations,” Artificial Intelligence, 8, no. 1, pp. 99–118, 1977.

[11] A.K. Mackworth and E.C. Freuder, “The complexity of some polynomial network consistency algorithms for constraint satisfaction problems,” Artificial Intelligence, 25, pp. 65-74, 1985.

[12] D. Mitchell, B. Selman, and H. Levesque. “Hard and Easy Distributions of SAT problems.” In Proceedings AAAI-92, San Jose, CA, 459-465, July 1992

[13] R. Mohr and T.C. Henderson, “Arc and path consistency revised,” Artificial Intelligence, 28, pages 225-233, 1986.

[14] http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html (SATLIB - Benchmark Problems)

[15] E.P.K. Tsang, “Foundations of Constraint Satisfaction,” Academic Press, London and San Diego, 1993

[16] P. Van Hentenryck, Y. Deville, and C.M. Teng, “A generic arc-consistency algorithm and its specializations,” Artificial Intelligence, 57, pages 291-321, 1992.

