
Model Checking for Aspect-Oriented Software Evolution

WUTTIPONG RUANTHONG AND PORNSIRI MUENCHAISRI
Department of Computer Engineering, Faculty of Engineering

Chulalongkorn University
254 Phyathai Road, Patumwan, Bangkok

THAILAND

Abstract: Model checking is the verification approach for proving a satisfaction of desired properties on a finite
state system model. Whenever a new feature (aspect) which is developed as a separated unit is composed to the
original software for evolving to the next generation, the properties which held on the model of the original
software should be re-checked for their preservation. The re-verification of those properties with the traditional
method is impractical because the state space of that software model is increased after the evolution. We use
model checking for verifying the evolving software model based on the aspect-oriented concepts. The proposed
technique for the preservation checking called “certainty -aware technique” can reduce time and state space in
the process of preservation checking. Therefore, the verification process of model checker which utilizes our
technique can be completed faster than the verification process of traditional model checker.

Key-Words: Software Algorithm, Software Verification, Model Checking, Software Evolution and
Aspect-Oriented Software Development

1 Introduction

Aspect-oriented concepts are useful for facilita-
ting a process of software maintenance and software
evolution because a software complexity can be
managed by a decomposition mechanism which
separates software into manageable units [6]. Each
separated unit is a part of software that is responsible
for a specific requirement. In the process of software
evolution, the separated units can be separately
developed and incrementally added to the original
software as the additional features. There are many
approaches which implement the aspect-oriented
concepts, such as Collaboration-based Design [7],
MDSOC [3], AOP [4] and AHEAD [5]. Although
these dominant approaches have their own distinctive
features, but there is a commonality in their main
ideas at the decomposition and composition mecha-
nism. The separated units are called differently by
their different approach, e.g. “concerns”, “features”
or “collaborations”, but the term we used equivalent-
ly in this paper is “aspects”.

Since the model of original software verified by
the model checking approach [2] is incrementally
changed after the addition of aspects, the properties
which held on that model must be re-checked for
their preservation. We call this re-checking process
as “preservation checking”. The preservation check-
ing with the traditional method is more complex than
the previous verification because the state space of
software model is increased after the evolution.

The contribution of this paper is the “certainty-
aware technique” which addresses the above

problem. The proposed technique which consists of
two processes, certainty analysis and re-verification,
can be generally applied to any evolving forms of
software model. In the evolution process, the aspect
model may either introduce or remove some elements
of the base model. Since the computation paths of
base model are changed, properties which held on
that base model might be uncertain. The certainty
analysis process is operated for checking the
certainty of those properties. If some sub-formulas of
those properties are considered as uncertain, then
they must be re-verified in the re-verification
process. We demonstrate that our technique can
reduce the time and state space of preservation
checking.

Section 2 refers to some related works. The basic
models for aspect-oriented software are defined in
section 3. Section 4 details the proposed technique.
Section 5 demonstrates our technique with a simple
example. Section 6 issues the idea of property
evolution. The conclusion is in section 7.

2 Related Works

Fisler and Krishnamurthi [8] originally proposed
the preservation checking technique for collaboration
-based software design (equally well to aspect-
oriented form). They utilized a “compositional
reasoning technique” for confirming the preservation
of properties when the base collaboration and the
extension collaboration were composed together. In
their basic models, the interface states were used as

This work was supported by “Chulalongkorn-Industry Linkage
Research Fund”.

the joints for the composition of both collaborations.
The preservation constraints were derived from sub-
formulas in the labels of base collaboration’s inter-
face states. The modular verification was performed
on the extension collaboration. The properties were
preserved if sub-formulas in the labels of extension
collaboration’s interface states were consistent to the
preservation constraints. The complexity of the
preservation checking was performed within a scope
of extension collaboration rather than the entire
composite system.

Later, Thang and Katayama [9] enhanced the
basic model of original work for a more general of the
collaboration-based software. They showed the
weakness of the original work’s technique with the
circumstances that the compositional reasoning
cannot correctly apply but the concrete solution for
that weakness was not proposed.

3 Basic Models for Aspect-Oriented
Software

We define three basic models (the base model, the
aspect model and the composite model) within
definitions 1 to 3 as a representation of aspect-
oriented software. Our basic models have a key
difference from [8, 9] that the interface states are not
explicitly presented for the composition of the base
model and the additional aspect. The aspect model
can either introduce some states and/or transitions to
the base model or remove them from the base model
while the composition with interface states can be
only applied for the addition of individual aspect to
the base model. In this paper, we present only the
basic models for a system with single actor.

Definition 1: The base model M = 〈S, ∑ ,∆ , s0, R,
L〉 where S is a set of states in M, ∑ is a set of atomic
propositions for input events, ∆ is a set of all sub-
formulas of the verified properties, s0 ∈S is an initial
state of M, R ⊆ S×PL(∑)×S is the set of transitions
between two states (where PL(∑) denotes the set of
propositions expressed over∑) and L:S→ ∆2 indicat-
es the set of sub-formulas that are true on each state.

Definition 2: The aspect model A = 〈M, S+, +∑ , +∆ ,
s+opt, R+, L+, α, β〉 where M is a specific base model
that this aspect applies to, S+ is a set of additional
states, +∑ is a set of additional atomic propositions for
input events, +∆ is a set of additional sub-formulas,
s+∈(S ∪S+) is a new initial state (s+ is an optional, if s+
is undefined then s0 of M still be an initial state), R+ ⊆
((S ∪S+)×PL(+∑∪∑)×(S ∪S+)-R) is the set of addition-
al transitions, L+ : S+→ +∆∪∆2 indicates the set of sub-

formulas that are true on each additional state, α ⊆ S
is a set of states in the base model and β ⊆ R is a set of
transitions in the base model that will be removed
from the base model after the composition.

Definition 3: A composite model M’ = 〈S ′, ∑′ , ∆′ ,
s′, R ′, L′〉 is composed from the base model M and the
additional aspect A , denoted M’ = A(M), where S ′ =
(S ∪S+)-α,∑′ = +∑∪∑ ,∆′ = +∆∪∆ , s′ = s+ if s+ is defined
in A or s′ = s0 if s+ is undefined in A, R ′ = (R ∪R+)-β
and L′(s) =L(s) for ∀s ∈S and L′(t) = L+(t) for ∀t ∈S+.

4 The Preservation Checking with
Certainty-Aware Technique

After the composition, sub-formulas which are
true on each state of base model might be uncertain
because of the following two conditions. First, sub-
formulas specified with a path quantifier are uncer-
tain whenever some computation paths are changed.
Second, sub-formula that its truth value depends on
the truth value of other sub-formulas is also uncertain
if some dependent sub-formula is uncertain.

We should check the certainty of all sub-formulas
in the label of each state after the composition. If
those sub-formulas are certainly true on that state,
then we can conclude that the property is preserved.
However, if some sub-formulas are uncertain, then a
re-verification of those sub-formulas must be
performed for evaluating their actual truth values.
Our technique consists of two processes: certainty
analysis and re-verification which are detailed in
sections 4.1 and 4.2 respectively.

4.1 Certainty analysis
We represent the dependent relation of

sub-formulas as the graph called “Sub-formulas
Dependence Graph (SDG)” in definition 4.

Definition 4: Sub-formulas Dependence Graph
(SDG) is 〈v, d〉 where v is the set of sub-formulas that
are true on any states of base model M and d ⊆ v × v is
the dependent relation of sub-formulas in the set v.
The set v and the relation d are symbolically defined
as follows: v = {ƒs • (ƒ, s) ∈ ∆× SM | ƒ ∈L(s)} and d =
{(ƒs, ƒ′s′) • (ƒs, ƒ′s′) ∈ v × v | V(ƒ,s) →V(ƒ′,s′)} where
V:∆×SM →{TRUE, FALSE} is represented for the veri-
fication algorithm which is evaluating the sub-
formula ƒ on state s. This algorithm can be implemen-
ted with a recursive function-call. The function-call is
symbolized as V(ƒ,s)→V(ƒ′,s′) denoted for the
dependency of ƒs to ƒ′s′ because the verification of ƒs
requires the truth values from the verification of ƒ′s′.

After the composition of the base model and the
aspect model, the certainty of each sub-formula in the
label of any states can be analyzed from the out-going
transitions which are added to or removed from those
states. Let γ is the set of states in base model that
some out-going transitions are removed from those
states, γ∗ is the set of states in base model that all out-
going transitions are removed from those states and δ
is the set of states in base model that some out-going
transitions are added to those states. The decision rule
for certainty analysis is specified in definition 5. This
decision rule is used for classifying sub-formulas in a
label of each state into the set of certain sub-formulas
and the set of uncertain sub-formulas.

Definition 5: ξ is the set of sub-formulas which
are considered as uncertain (Note : ξ⊆v). Sub-formula
ƒs∈v is considered as uncertain, then ƒs∈ξ , if one of
the following conditions is true:

1.) case ƒ is a sub-formula specified with a CTL
operator (e.g. EX, AX, EU or AU) and s ∈ γ∗.

2.) case ƒ=EX(ƒ′)
s ∈γ ∨ ∀ƒ′t∈Succ(ƒs) [ƒ′t∈ξ].

3.) case ƒ=AX(ƒ′)
s ∈δ ∨ ∃ƒ′t∈Succ(ƒs) [ƒ′t∈ξ].

4.) case ƒ=E(ƒ′Uƒ″)
(ƒt∈Succ(ƒs) ∧ s ∈γ) ∨ (ƒ′s∈Succ(ƒs)∧ƒ′s∈ξ)

∨ (ƒ″s∈Succ(ƒs) ∧ ƒ″s∈ξ) ∨ (∀ƒ′t∈Succ(ƒs) [ƒ′t∈ξ]).
5.) case ƒ=A(ƒ′Uƒ″)

(ƒt∈Succ(ƒs) ∧ s ∈δ) ∨ (ƒ′s∈Succ(ƒs)∧ƒ′s∈ξ)
∨ (ƒ″s∈Succ(ƒs) ∧ ƒ″s∈ξ) ∨ (∃ƒ′t∈Succ(ƒs) [ƒ′t∈ξ]).

Note: t is an immediate successor of state s in
state-transition graph and Succ: v→2v indicates the set
of all immediate successors of each node in SDG.

After the analysis , if ƒ is certain on state s (ƒs∉ξ),

then ƒ is preserved on state s because ƒ are still consi-
dered as the member of its label. Otherwise, ƒ is
uncertain on state s (ƒs∈ξ), the re-verification of ƒ on
state s must be performed for its actual truth value.

4.2 Re-verification
The state space of base model can be reduced

before the composition with the additional aspect. We
classify states in the base model into the following
three sets: the set of re-verified states Srv , the set of
border states Sbd and the set of reducible states Srd .
The re-verified state is a state that there exists an
uncertain sub-formula in its label. The border state is
a state that all sub-formulas in its label are certain but
there exists a transition from the re-verified states to
it. The reducible state is a state that all sub-formulas

in its label are certain and there is no connection from
the re-verified states. These sets can be symbolized as
follows: Srv ={s • s ∈ SM | ∃ƒ∈L(s)[ƒs∈ξ]}, Sbd = {s • s
∈ SM | ∀ƒ∈L(s)[ƒs∉ξ] ∧ ∃t ∈Srv [(t, ∗ ,s) ∈ RM]}
(where ∗ is unimportant) and Srd = SM – (Srv ∪ Sbd).
States in the set Srd and their connecting transitions
can be reduced. Thus, there are only states in the sets
Srv, Sbd and S+A that must be generated.

On the re-verification process, Sub-formulas that
must be checked on the additional states can be consi-
dered as uncertain because their truth values are not
yet known. Therefore, the re-verification algorithm
must check them together with sub-formulas in set ξ.
We define sub-formulas that must be re-verified on
the additional states as the members of set u, symboli-
zed as u = {ƒs • (ƒ, s)∈∆×S+A | ƒ must be re-verified on
state s by the re-verification process}. Definition 6
specifies sub-formulas that have to be re-verified and
sub-formulas that need not be re-verified.

Definition 6: ϒ = u ∪ ξ is the set of re-verified
sub-formulas. ƒs is considered as a re-verified sub-
formula, denoted ƒs, whenever ƒs is the member of
set ϒ, otherwise ƒs is a certain sub-formula, denoted
ƒs, which need not be re-verified.

Definition 7 is the re-verification algorithm which

is represented as a recursively defined function. The
operation of this algorithm is similar to the original
algorithm [1] except that this algorithm concerns
about the certainty of each re-verified sub-formula.
Suppose sub-formula ƒs is re-verified, then we can
infer after the termination of re-verification process
with the following condition: ƒ is preserved on state s
of M’, denoted M’,s ƒ, if and only if ƒsand ƒ∈L′(s).

Definition 7: RV:∆×S ′M’ → {TRUE, FALSE} is the

representation of re-verification algorithm. This func-
tion evaluates the truth value of sub-formula ƒ∈∆on
state s ∈S ′M’. We define this algorithm as a recursive-
ly defined function with the following description:

case ƒs:
if ƒ∈L′(s) then

RV(ƒ,s) = TRUE, otherwise RV(ƒ,s) = FALSE.
case ƒs:
if T(ƒ) = NO and Sub(ƒ)∈L′(s) then

RV(ƒ,s) = TRUE, otherwise RV(ƒ,s) = FALSE.
if T(ƒ) = EX ;where ƒ is EX(ƒ0) then

RV(ƒ,s) = ∃t [RV(ƒ0,t)=TRUE].
if T(ƒ) = AX ;where ƒ is AX(ƒ0) then

RV(ƒ,s) = ∀t [RV(ƒ0,t)=TRUE].
if T(ƒ) = EU ;where ƒ is E(ƒ1Uƒ2) then

RV(ƒ,s) = (RV(ƒ2,s)=TRUE) ∨ (RV(ƒ1,s) =
TRUE ∧ ∃t [RV(ƒ,t)=TRUE]).

if T(ƒ) = AU ;where ƒ is A(ƒ1Uƒ2) then
RV(ƒ,s) = (RV(ƒ2,s)=TRUE) ∨ (RV(ƒ1,s) =

TRUE ∧ ∀t [RV(ƒ,t)=TRUE]).
Note:
- t∈S ′M’ is an immediate successor of state s in the

state-transition graph.
- Sub: ∆ → ∆2 indicates all sub-formulas of an

assigned formula.
- T:∆→{NO, EX, AX, EU, AU} maps an assigned

sub-formula to its corresponding type of CTL
operator, such as EX, AX, EU or AU. If the assigned
sub-formula is a proposition without CTL operator,
then the NO is mapped.

- Before the starting of re-verification process, ƒ is
removed from L′(s) if ƒs is ƒs.

- After the completion of re-verification process,
ƒs is changed to ƒsand ƒ is added to L′(s) if the
evaluated result of RV(ƒ,s) is TRUE.

4.3 Dealing with the circular re-verification
The re-verification process of algorithm in defini-

tion 7 cannot terminate if the circular function-call
occur during the re-verification. For instance, let ƒ is
uncertain on state s, denoted as ƒs. Suppose the
re-verification of ƒs requires the evaluated result
from the re-verification of ƒt, symbolized as
RV(ƒ,s)→RV(ƒ,t), where t is the additional state that
is introduced as the immediate successor of s but the
re-verification of ƒt also requires the evaluated
result from the re-verification of ƒs, RV(ƒ,t)→
RV(ƒ,s), then the circular function-call occurs.

We address this problem by the following idea.
First, we insert a method for detecting a circular
function-call into the re-verification algorithm. The
circular function-call will be immediately terminated
when it is detected. Then, we define the decision rules
for determining the actual re-verification result which
can be inferred from the amount of detected circular
function-calls. The characteristic of circular function-
call is specified in definition 8. The decision rules
used for determining the re-verification result are
derived from theorems 1 and 2. The proofs of these
theorems are presented in Appendix.

Definition 8: W is a relation of re-verified sub-
formulas in the re-verification process. This relation
can be symbolized as follow: W = {(ƒs , ƒ′s′) • (ƒs ,ƒ′s′)
∈ ϒ×ϒ | RV(ƒ,s)→RV(ƒ′,s′)}. The sequence of the
re-verified sub-formulas can be enumerated as (ƒ0s0,
ƒ1s1), (ƒ1s1,ƒ2s2), …, (ƒn-1sn-1, ƒnsn) where ∀i [1 ≤ i ≤ n

⇒ (ƒi-1si-1,ƒisi)∈W]. This sequence is called a re-
verification path from ƒ0s0 to ƒnsn and it can be simply
shown in the form of ƒ0s0, ƒ1s1, …, ƒn-1sn-1, ƒnsn. The
re-verification path that the first sub-formula and the
last sub-formula are the same sub-formula (ƒ0s0 =
ƒnsn) is called a re-verification cycle.

Theorem 1: Let ƒ is A(ƒ1Uƒ2), if there exists a
re-verification cycle starting from ƒs0 which can be
enumerated as ƒs0, ƒs1, ƒs2, ƒs3, …, ƒsn-1, ƒsn, ƒs0 then
RV(ƒ,s0) = FALSE.

Theorem 2: Let ƒ is E(ƒ1Uƒ2), if there are all
re-verification cycles starting from ƒs0 which can be
enumerated as ƒs0, ƒs1, ƒs2, ƒs3, …, ƒsn-1, ƒsn, ƒs0 then
RV(ƒ,s0) = FALSE.

5 Example
We exemplify our verification technique by the

example in figure 1. The base model M in figure 1(a)
is evolved to the composite model M’ in figure 1(c)
by the composition with additional aspect A in figure
1(b). Sub-formulas “black” is true on state with black
color and sub-formula “white” is true on state with
white color. The property A(blackUwhite) holds in
the base model, denoted M,s0 A(blackUwhite).

Figure 1. The evolution with aspect-oriented concepts .

The SDG of this property is presented in figure 2.

From the certainty analysis, we know that the
sub-formula A(blackUwhite)s1 is uncertain after the
evolution because there is an out-going transition
added to state s1 and the sub-formula A(blackU
white)s0 is also uncertain because it depends on the
truth value of A(blackUwhite)s1 (from the condition 5
of definition 5). The dashed nodes in SDG indicate
uncertain sub-formulas which must be re-verified.

The state space of evolving model should be
reduced before the re-verification. Considering the
base model, since the A(blackUwhite)s0 and the
A(blackUwhite)s1 are uncertain sub-formulas then
states s0,s1 are the re-verified states (s0,s1 ∈Srv). States
s2,s3 are the border states (s2,s3 ∈Sbd) because all sub-
formulas in their labels are certain and there are
transitions from states s0,s1 connecting to them. Thus,
states s4,s5 can be reduced in this circumstance.

(a) The base model M . (b) The additional aspect A .

s 0

s 1

s 2

s 3

s 4
s 5

(c) The evolving model M

′ .

s 2 s 4
s 0

s 1 s 3 s 6

s 5

s 6

s 0

s 1

Figure 2. Sub-formula Dependence Graph.

The re-verification process of this example can be

viewed as the space of function-call in figure 3. The
dashed box indicates a re-verification of uncertain
sub-formula while the solid box indicates a re-verifi-
cation of certain sub-formula. The re-verification of
uncertain sub-formula is similar to conventional
verification but the re-verification of certain sub-
formula is different because the model checker can
immediately get the truth value of that sub-formula
without a deep re-verification and a modification to
the label of state. Thus, the complexity in the
re-verification process of our algorithm is less than
the process of conventional algorithm.

Since the circular function-call occurs in this
re-verification, by theorem 1, then the re-verification
algorithm will determine that A(blackUwhite) is false
on state s0. Therefore, the property A(blackUwhite) is
not preserved in the evolving model M’.

Figure 3. The re-verification process.

6 The Evolution of Property

It is possible that the additional properties defined
for responding to the additional features may be
evolved from the original properties which hold in
the base model. We define the informal semantic of
property evolution as “the property ϕ′ is evolved from
ϕ if and only if there exists sub-formula of ϕ within
the proposition of ϕ′ ”. For instance, let the property
ϕ = E(blackUwhite) holds on the base model M. The

developers introduce the additional aspect to that
base model for evolving to M’ and they need to know
that the additional property ϕ′ = “AG(E(blackU
white)∧EG(black))” holds in the model M’ or not.
The property ϕ′ evolves from ϕ because the E(black
Uwhite) of ϕ is also within the proposition of ϕ′. In
our approach, if the E(blackUwhite) is considered as
a certain sub-formula, then the verification of ϕ′ with
the re-verification algorithm is completed faster than
the traditional algorithm because, rather than
verification of all sub-formulas, the E(blackUwhite)
is ignored from the verification. Thus, our approach
is very useful for this circumstance.

7 Conclusion
This paper presents the software evolution based

on the aspect-oriented concepts. The basic models for
aspect-oriented software are proposed. We employ
the model checking for a verification of that aspect-
oriented software model. The contribution of this
paper is the preservation checking technique called
certainty -aware technique. We suggest that this
technique should be utilized by the CTL model
checker for reducing the complexity of verification
process. This technique consists of two processes:
certainty analysis and re-verification. With the
certainty analysis, we can determine if sub-formulas
are certain or not after the evolution. Only the
uncertain sub-formulas must be re-verified in the
re-verification process for their actual truth values.
As discussed in section 6, this technique is not only
useful for the software model evolution, but also the
property evolution. Some sub-formulas in the
evolving property need not be re-verified if they are
considered as the certain sub-formulas. Thus, only
the additional sub-formulas should be verified.

We demonstrate the effectiveness of our technique
with a simple example. For future works, the actual
assessment of our approach should be performed by
the experiment on real world applications. It is
possible that there is an introduction of new actors
after the evolution, but our approach is limited on
only the case that the numbers of actors are not
changed. Hence, the generality of our approach
should be improved and the model checker which
utilizes our technique should be implemented.

8 Acknowledgements

We are grateful to Professor Takuya Katayama for
his comments of our works.

 A(blackUwhite) s0
black

 s0
A(blackUwhite) s1

A(blackUwhite) s2

black s1 black s2
A(blackUwhite) s3

A(blackUwhite) s4

black s3
A(blackUwhite)

s5 black
 s4

white s5

TRUE

RV (A(black U white) ,s0)
RV (white ,s 0)

RV (A(black U white) ,s1)

RV (white ,s 1)

RV (A(black U white) ,s3)

RV (A(black U white) ,s6)

RV (white ,s 6)

RV (black,s 0)

RV (black,s 1)

RV (black,s 6)

TRUE

TRUE

TRUE
 FALSE

FALSE

FALSE
 RV (A(black U white) ,s4)

TRUE

References:
[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla ,

Automatic Verification of Finite-State Concurre-
nt Systems using Temporal Logic Specifications,
ACM Transactions on Programming Languages
and Systems, Vol. 8, No. 2, 1986, pp.244-263.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled,
Model Checking, The MIT Press, 2000.

[3] P. Tarr, H. Ossher, W. Harrison, and S. M.
Sutton, N-degrees of separation: Multi-dimen
sional separation of concerns. In Proc. ICSE,
1999, pp. 109-117.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin,
Aspect-oriented programming, In European
Conference on Object-Oriented Programming
(ECOOP’97), 1997, pp. 220-242.

[5] D. Batory, J.N. Sarvela, and A. Rauschmayer,
Scaling Step-Wise Refinement, In Proc. ICSE,
2003, pp. 187-197.

[6] T. Mens and M. Wermelinger, Separation of
concerns for software evolution, Journal of
Software Maintenance and Evolution, Vol. 14,
2002, pp. 311-315.

[7] Y. Smaragdakis and D. Batory, Mixin layers: an
object-oriented implementation technique for
refinements and collaboration-based designs,
ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 11, No.2, April
2002, pp.215-255.

[8] K. Fisler and S. Krishnamurthi, Modular
verification of collaboration-based software
designs , In Proc. Symposium on the Foundations
of Software Engineering, 2001, pp.152-163.

[9] N. T. Thang and T. Katayama, Towards a Sound
Modular Model Checking of Collaboration-
Based Software Design, In Proc. The tenth
Asia-Pacific Software Engineering Conference
(APSEC’03), 2003.

Appendix

Lemma 1: Given a re-verification path that can be enumerated as f0s0,
f1s1, f2s2, …, fn-1sn-1, fnsn. Suppose fnsn is re-verified by the re-verification
function RV and it can be changed to be certain, then this re-verification
path is not a re-verification cycle. Proof

Step 1: By definition 7, a re-verification of fs that result s in either
TRUE or FALSE must conform to one of following conditions:

- T(f)∉{EX, AX, EU, AU}, thus f can be evaluated immediately at
state s.

- T(f)∈{EX, AX, EU, AU} and ∀f ′s′[RV(f , s) →RV(f ′,s′) ⇒ f ′s′].
Step 2: From the hypothesis, fnsn is uncertain at first then it can be

changed to certain after the completion of RV(fn, sn). Therefore, from step
1, fnsn must conform to one of the following conditions:

- T(fn)∉{EX, AX, EU, AU}; fn can be evaluated immediately at
state sn.

- T(fn)∈{EX, AX, EU, AU}and ∀f ′s′ [RV(fn, sn) → RV(f ′, s′) ⇒ f ′s′]

Step 3: By definition 8, we can enumerate the view of recursive
function-call on this re-verification path as RV(f0,s0)→RV(f1,s1)→
RV(f2,s2)→RV(f3, s3)→ …→ RV(fn-1, sn-1)→RV(fn,sn). Since there is a
recursive function-call from RV(f0,s0), f0 cannot be evaluated
immediately at state s0, thus RV(f0, s0) requires the certainty of f1s1 from
the re-verification result of RV(f1, s1) and so on.

Step 4: Suppose fn cannot be evaluated immediately at state sn then
all f ′s′ that RV(fn, sn)→ RV(f ′, s′) must be certain (from step 2). Since there
is a recursive function-call of RV(f0,s0)→RV(f1,s1) which indicates that
f1s1 is uncertain, then f0s0 ≠ fnsn. Therefore, from definition 8, we can prove
that the re-verification path is not a re-verification cycle. ♦

Lemma 2: Given a re-verification path that can be enumerated as fs0,

fs1, fs2, …, fsm-1, fsm where f is totally A(f1Uf2) or f is totally E(f1Uf2). Suppose
∃n [(0 ≤ n ≤ m) ⇒ RV(f2,sn)=TRUE] then a sequence fs0, fs1, fs2, …, fsn-1, fsn is
not a re-verification cycle. Proof

From the hypothesis, we can assume RV(f2,sn)=TRUE. By definition
7, fsn is changed to fsnwhenever RV(f,sn) completes the verification
process. With the lemma 1, we can deduce that the sequence fs0, fs1, fs2, fs3,
…, f sn-1, fsn is not the re-verification cycle because fsn can be changed to a
certain sub-formula. ♦

Theorem 1: Let f is A(f1Uf2), if there exists a re-verification cycle

starting from fs0 which can be enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0
then RV(f, s0) = FALSE. Proof

Step 1: The re-verification cycle that is starting from fs0 can be
enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0 . By definition 8, we can illustrate
the view of recursive function-call on this re-verification cycle as
RV(f,s0)→RV(f,s1)→RV(f,s2)→RV(f,s3)→…RV(f,sn-1)→RV(f,sn)→RV(f,s0).
Since state s0 is an immediate successor of sn and state si is an immediate
successor of si-1 where 1≤ i ≤ n, then there exists a path (s0, s1,…, sn-1, sn , s0) in
the state-transition graph. (1)

Step 2: The contrapositive of Lemma 2 is that if the sequence fs0, fs1,
fs2, fs3, …, fsn-1, fsn is a re-verification cycle then ∀i [(0 ≤ i ≤ m) ⇒ RV(f2,si) =
FALSE] ,where m ≥ n.

Therefore, ∀i [(0 ≤ i ≤ n) ⇒ si ¬f2]. (2)
Step 3: From (1) (2) and Lemma 3.2 of [1], we can deduce that

s0 ¬A(f1Uf2). Thus, we can conclude that RV(f,s0) = FALSE where f is
A(f1Uf2). ♦

Note: Lemma 3.2 (from [1])
Suppose there exists a path (s0, s1, s2, …, sn, sk) in the state-transition

graph such that 0 ≤ k ≤ n and ∀i [0 ≤ i ≤n ⇒ si ¬f2], then sk ¬A(f1Uf2).

Theorem 2: Let f is E(f1Uf2), if there are all re-verification cycles

starting from fs0 which can be enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0
then RV(f,s0) = FALSE. Proof

Let t is an immediate successor of s in a state-transition graph.
From definition 7,
(RV(f,s)=TRUE) ⇒ (RV(f2,s)=TRUE ∨ (RV(f1,s)=TRUE ∧ ∃t

[RV(f,t)=TRUE]))
The contrapositive of above statement is
(RV(f2,s)=FALSE ∧ (RV(f1,s)=FALSE ∨ ∀t[RV(f,t)= FALSE])) ⇒

(RV(f,s)=FALSE)
So, if we can show RV(f2,s0)=FALSE and ∀t [RV(f,t)=FALSE] where

t is an immediate successor of s0 then we can prove the RV(f,s0) = FALSE.
Step 1: Each re-verification cycle that is starting from fs0 can be

enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0. The contrapositive of Lemma 2
is that if the sequence fs0, fs1, fs2, fs3, …, fsn-1, fsn is a re-verification cycle then
∀i [(0 ≤ i ≤m) ⇒ RV(f2,si) = FALSE] where m ≥ n.

Therefore, RV(f2,s0) = FALSE. (1)
Step 2: For each re-verification cycle, ∀i [(1 ≤ i ≤n) ⇒

RV(f,si)=FALSE]) because the following two reasons:
1.) ∀i [(1 ≤ i ≤ n) ⇒ RV(f2,si)=FALSE] (from above) and
2.) ∀i [(1 ≤ i ≤ n) ⇒ fisi cannot change to fisi ] (by the

contrapositive of Lemma 1, if the re-verification path is a re-verification
cycle then fnsn cannot change to be certain by the re-verification function
RV). Thus, we can infer that ∀s1 [RV(f,s1) =FALSE] where fs1 is an
immediate successor of fs in all re-verification cycles. (2)

From (1) and (2), we can prove that RV(f,s0) = FALSE. ♦

