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Abstract: Model checking is the verification approach for proving a satisfaction of desired properties on a finite 
state system model. Whenever a new feature (aspect) which is developed as a separated unit is composed to the 
original software for evolving to the next generation, the properties which held on the model of the original 
software should be re-checked for their preservation. The re-verification of those properties with the traditional 
method is impractical because the state space of that software model is increased after the evolution. We use 
model checking for verifying the evolving software model based on the aspect-oriented concepts. The proposed 
technique for the preservation checking called “certainty -aware technique” can reduce time and state space in 
the process of preservation checking. Therefore, the verification process of model checker which utilizes our 
technique can be completed faster than the verification process of traditional model checker. 
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1   Introduction 

Aspect-oriented concepts are useful for facilita- 
ting a process of software maintenance and software 
evolution because a software complexity can be 
managed by a decomposition mechanism which 
separates software into manageable units [6]. Each 
separated unit is a part of software that is responsible 
for a specific requirement. In the process of software 
evolution, the separated units can be separately 
developed and incrementally added to the original 
software as the additional features. There are many 
approaches which implement the aspect-oriented 
concepts, such as Collaboration-based Design [7], 
MDSOC [3], AOP [4] and AHEAD [5]. Although 
these dominant approaches have their own distinctive 
features, but there is a commonality in their main 
ideas at the decomposition and composition mecha- 
nism. The separated units are called differently by 
their different approach, e.g. “concerns”, “features” 
or “collaborations”, but the term we used equivalent- 
ly in this paper is “aspects”. 

Since the model of original software verified by 
the model checking approach [2] is incrementally 
changed after the addition of aspects, the properties 
which held on that model must be re-checked for 
their preservation. We call this re-checking process 
as “preservation checking”. The preservation check- 
ing with the traditional method is more complex than 
the previous verification because the state space of 
software model is increased after the evolution.  

The contribution of this paper is the “certainty- 
aware technique” which addresses the above 

problem. The proposed technique which consists of 
two processes, certainty analysis and re-verification, 
can be generally applied to any evolving forms of 
software model. In the evolution process, the aspect 
model may either introduce or remove some elements 
of the base model. Since the computation paths of 
base model are changed, properties which held on 
that base model might be uncertain. The certainty 
analysis process is operated for checking the 
certainty of those properties. If some sub-formulas of 
those properties are considered as uncertain, then 
they must be re-verified in the re-verification 
process. We demonstrate that our technique can 
reduce the time and state space of preservation 
checking. 

Section 2 refers to some related works. The basic 
models for aspect-oriented software are defined in 
section 3. Section 4 details the proposed technique. 
Section 5 demonstrates our technique with a simple 
example. Section 6 issues the idea of property 
evolution.  The conclusion is in section 7. 
 
 
2   Related Works 

Fisler and Krishnamurthi [8] originally proposed 
the preservation checking technique for collaboration 
-based software design (equally well to aspect- 
oriented form). They utilized a “compositional 
reasoning technique” for confirming the preservation 
of properties when the base collaboration and the 
extension collaboration were composed together. In 
their basic models, the interface states were used as 
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the joints for the composition of both collaborations. 
The preservation constraints were derived from sub- 
formulas in the labels of base collaboration’s inter- 
face states. The modular verification was performed 
on the extension collaboration. The properties were 
preserved if sub-formulas in the labels of extension 
collaboration’s interface states were consistent to the 
preservation constraints. The complexity of the 
preservation checking was performed within a scope 
of extension collaboration rather than the entire 
composite system. 

Later, Thang and Katayama [9] enhanced the 
basic model of original work for a more general of the 
collaboration-based software. They showed the 
weakness of the original work’s technique with the 
circumstances that the compositional reasoning 
cannot correctly apply but the concrete solution for 
that weakness was not proposed.  
 
 
3   Basic Models for Aspect-Oriented 
Software  

We define three basic models (the base model, the 
aspect model and the composite model) within 
definitions 1 to 3 as a representation of aspect- 
oriented software. Our basic models have a key 
difference from [8, 9] that the interface states are not 
explicitly presented for the composition of the base 
model and the additional aspect. The aspect model 
can either introduce some states and/or transitions to 
the base model or remove them from the base model 
while the composition with interface states can be 
only applied for the addition of individual aspect to 
the base model. In this paper, we present only the 
basic models for a system with single actor.  

Definition 1: The base model M = 〈S, ∑ ,∆ , s0, R, 
L〉 where S  is a set of states in M, ∑ is a set of atomic 
propositions for input events, ∆ is a set of all sub- 
formulas of the verified properties, s0 ∈S is an initial 
state of M, R ⊆ S×PL(∑ )×S is the set of transitions 
between two states (where PL(∑ ) denotes the set of 
propositions expressed over∑ ) and L:S→ ∆2  indicat- 
es the set of sub-formulas that are true on each state.  

Definition 2: The aspect model A = 〈M, S+, +∑ , +∆ , 
s+opt, R+, L+, α, β〉 where M is a specific base model 
that this aspect applies to, S+ is a set of additional 
states, +∑ is a set of additional atomic propositions for 
input events, +∆ is a set of additional sub-formulas, 
s+∈(S ∪S+) is a new initial state (s+ is an optional, if s+ 
is undefined then s0 of M still be an initial state), R+ ⊆ 
((S ∪S+)×PL( +∑∪∑ )×(S ∪S+)-R) is the set of addition- 
al transitions, L+ : S+→ +∆∪∆2 indicates the set of sub- 

formulas that are true on each additional state, α ⊆ S 
is a set of states in the base model and β ⊆ R is a set of 
transitions in the base model that will be removed 
from the base model after the composition. 

Definition 3: A composite model M’ = 〈S ′, ∑′ , ∆′ , 
s′, R ′, L′〉 is composed from the base model M and the 
additional aspect A , denoted M’ = A(M), where S ′ = 
(S ∪S+)-α,∑′ = +∑∪∑ ,∆′ = +∆∪∆ , s′ = s+ if s+ is defined 
in A or s′ = s0 if s+ is undefined in A, R ′ = (R ∪R+)-β 
and L′(s) =L(s) for ∀s ∈S and L′(t)  = L+(t) for ∀t ∈S+. 

 
 

4 The Preservation Checking with 
Certainty-Aware Technique 

After the composition, sub-formulas which are 
true on each state of base model might be uncertain 
because of the following two conditions. First, sub- 
formulas specified with a path quantifier are uncer- 
tain whenever some computation paths are changed. 
Second, sub-formula that its truth value depends on 
the truth value of other sub-formulas is also uncertain 
if some dependent sub-formula is uncertain.  

We should check the certainty of all sub-formulas 
in the label of each state after the composition. If 
those sub-formulas are certainly true on that state, 
then we can conclude that the property is preserved. 
However, if some sub-formulas are uncertain, then a 
re-verification of those sub-formulas must be 
performed for evaluating their actual truth values. 
Our technique consists of two processes: certainty 
analysis and re-verification which are detailed in 
sections 4.1 and 4.2 respectively. 

 
 

4.1 Certainty analysis 
We represent the dependent relation of 

sub-formulas as the graph called “Sub-formulas 
Dependence Graph (SDG)” in definition 4. 

Definition 4: Sub-formulas Dependence Graph 
(SDG) is 〈v, d〉 where v is the set of sub-formulas that 
are true on any states of base model M and d ⊆ v × v is 
the dependent relation of sub-formulas in the set v. 
The set v and the relation d are symbolically defined 
as follows: v = {ƒs • (ƒ, s) ∈ ∆× SM  | ƒ ∈L(s)} and d = 
{(ƒs, ƒ′s′) • (ƒs, ƒ′s′) ∈ v × v | V(ƒ,s) →V(ƒ′,s′)} where 
V:∆×SM →{TRUE, FALSE} is represented for the veri- 
fication algorithm which is evaluating the sub- 
formula ƒ on state s. This algorithm can be implemen- 
ted with a recursive function-call. The function-call is 
symbolized as V(ƒ,s)→V(ƒ′,s′) denoted for the 
dependency of ƒs to ƒ′s′ because the verification of ƒs 
requires the truth values from the verification of ƒ′s′. 



After the composition of the base model and the 
aspect model, the certainty of each sub-formula in the 
label of any states can be analyzed from the out-going 
transitions which are added to or removed from those 
states. Let γ is the set of states in base model that 
some out-going transitions are removed from those 
states, γ∗  is the set of states in base model that all out- 
going transitions are removed from those states and δ 
is the set of states in base model that some out-going 
transitions are added to those states. The decision rule 
for certainty analysis is specified in definition 5. This 
decision rule is used for classifying sub-formulas in a 
label of each state into the set of certain sub-formulas 
and the set of uncertain sub-formulas. 

Definition 5: ξ is the set of sub-formulas which 
are considered as uncertain (Note : ξ⊆v). Sub-formula 
ƒs∈v is considered as uncertain, then ƒs∈ξ , if one of 
the following conditions is true: 

1.) case ƒ is a sub-formula specified with a CTL 
operator (e.g. EX, AX, EU or AU) and  s ∈ γ∗. 

2.) case ƒ=EX(ƒ′)  
s ∈γ ∨ ∀ƒ′t∈Succ(ƒs) [ƒ′t∈ξ].   

3.) case ƒ=AX(ƒ′)  
s ∈δ ∨ ∃ƒ′t∈Succ(ƒs) [ƒ′t∈ξ].   

4.) case ƒ=E(ƒ′Uƒ″) 
(ƒt∈Succ(ƒs) ∧ s ∈γ) ∨ (ƒ′s∈Succ(ƒs)∧ƒ′s∈ξ) 

∨ (ƒ″s∈Succ(ƒs) ∧ ƒ″s∈ξ) ∨ (∀ƒ′t∈Succ(ƒs) [ƒ′t∈ξ]).  
5.) case ƒ=A(ƒ′Uƒ″)  

(ƒt∈Succ(ƒs) ∧ s ∈δ) ∨ (ƒ′s∈Succ(ƒs)∧ƒ′s∈ξ) 
∨ (ƒ″s∈Succ(ƒs) ∧ ƒ″s∈ξ) ∨ (∃ƒ′t∈Succ(ƒs) [ƒ′t∈ξ]).   

Note: t is an immediate successor of state s in 
state-transition graph and Succ: v→2v indicates the set 
of all immediate successors of each node in SDG. 

 
After the analysis , if ƒ is certain on state s (ƒs∉ξ), 

then ƒ is preserved on state s because ƒ are still consi- 
dered as the member of its label. Otherwise, ƒ is 
uncertain on state s (ƒs∈ξ), the re-verification of ƒ on 
state s must be performed for its actual truth value.  

 
 

4.2 Re-verification 
The state space of base model can be reduced 

before the composition with the additional aspect. We 
classify states in the base model into the following 
three sets: the set of re-verified states Srv , the set of 
border states Sbd and the set of reducible states Srd . 
The re-verified state is a state that there exists an 
uncertain sub-formula in its label. The border state is 
a state that all sub-formulas in its label are certain but 
there exists a transition from the re-verified states to 
it. The reducible state is a state that all sub-formulas 

in its label are certain and there is no connection from 
the re-verified states. These sets can be symbolized as 
follows: Srv ={s • s ∈ SM | ∃ƒ∈L(s)[ƒs∈ξ ]}, Sbd  = {s • s 
∈ SM | ∀ƒ∈L(s)[ƒs∉ξ] ∧ ∃t ∈Srv [(t, ∗ ,s) ∈ RM]} 
(where ∗ is unimportant) and Srd = SM – (Srv ∪ Sbd). 
States in the set Srd and their connecting transitions  
can be reduced. Thus, there are only states in the sets 
Srv, Sbd and S+A that must be generated. 

On the re-verification process, Sub-formulas that 
must be checked on the additional states can be consi- 
dered as uncertain because their truth values are not 
yet known. Therefore, the re-verification algorithm 
must check them together with sub-formulas in set ξ. 
We define sub-formulas that must be re-verified on 
the additional states as the members of set u, symboli- 
zed as u = {ƒs • (ƒ, s)∈∆×S+A | ƒ must be re-verified on 
state s by the re-verification process}. Definition 6 
specifies sub-formulas that have to be re-verified and 
sub-formulas that need not be re-verified. 

Definition 6: ϒ = u ∪ ξ  is the set of re-verified 
sub-formulas. ƒs is considered as a re-verified sub- 
formula, denoted ƒs, whenever ƒs is the member of 
set ϒ, otherwise ƒs is a certain sub-formula, denoted 
ƒs, which need not be re-verified. 

 
Definition 7 is the re-verification algorithm which 

is represented as a recursively defined function. The 
operation of this algorithm is similar to the original 
algorithm [1] except that this algorithm concerns 
about the certainty of each re-verified sub-formula. 
Suppose sub-formula ƒs is re-verified, then we can 
infer after the termination of re-verification process 
with the following condition: ƒ is preserved on state s 
of M’, denoted M’,s      ƒ, if and only if ƒsand ƒ∈L′(s). 

 
Definition 7: RV:∆×S ′M’ → {TRUE, FALSE} is the 

representation of re-verification algorithm. This func- 
tion evaluates the truth value of sub-formula ƒ∈∆on 
state s ∈S ′M’. We define this algorithm as a recursive- 
ly defined function with the following description:  

case ƒs: 
if ƒ∈L′(s) then 

RV(ƒ,s) = TRUE, otherwise RV(ƒ,s) = FALSE. 
case ƒs: 
if T(ƒ) = NO and Sub(ƒ)∈L′(s) then 

RV(ƒ,s) = TRUE, otherwise RV(ƒ,s) = FALSE.  
if T(ƒ) = EX ;where ƒ is EX(ƒ0) then 

RV(ƒ,s) = ∃t [RV(ƒ0,t)=TRUE].  
if T(ƒ) = AX ;where ƒ is AX(ƒ0) then 

RV(ƒ,s) = ∀t [RV(ƒ0,t)=TRUE].  
if T(ƒ) = EU ;where ƒ is E(ƒ1Uƒ2) then 



RV(ƒ,s) = ( RV(ƒ2,s)=TRUE ) ∨ ( RV(ƒ1,s) = 
TRUE ∧ ∃t [RV(ƒ,t)=TRUE] ).  

if T(ƒ) = AU ;where ƒ is A(ƒ1Uƒ2) then 
RV(ƒ,s) = ( RV(ƒ2,s)=TRUE ) ∨ ( RV(ƒ1,s) = 

TRUE ∧ ∀t [RV(ƒ,t)=TRUE] ).  
Note:  
- t∈S ′M’ is an immediate successor of state s in the 

state-transition graph.  
- Sub: ∆ → ∆2 indicates all sub-formulas of an 

assigned formula. 
- T:∆→{NO, EX, AX, EU, AU} maps an assigned 

sub-formula to its corresponding type of CTL 
operator, such as EX, AX, EU or AU. If the assigned 
sub-formula is a proposition without CTL operator, 
then the NO is mapped. 

- Before the starting of re-verification process, ƒ is 
removed from L′(s) if ƒs is ƒs. 

- After the completion of re-verification process, 
ƒs is changed to ƒsand ƒ is added to L′(s) if the 
evaluated result of RV(ƒ,s) is TRUE. 

 
 

4.3 Dealing with the circular re-verification 
The re-verification process of algorithm in defini- 

tion 7 cannot terminate if the circular function-call 
occur during the re-verification. For instance, let ƒ is 
uncertain on state s, denoted as ƒs. Suppose the 
re-verification of ƒs requires the evaluated result 
from the re-verification of ƒt, symbolized as 
RV(ƒ,s)→RV(ƒ,t), where t is the additional state that 
is introduced as the immediate successor of s but the 
re-verification of ƒt also requires the evaluated 
result from the re-verification of ƒs, RV(ƒ,t)→ 
RV(ƒ,s), then the circular function-call occurs.  

We address this problem by the following idea. 
First, we insert a method for detecting a circular 
function-call into the re-verification algorithm. The 
circular function-call will be immediately terminated 
when it is detected. Then, we define the decision rules 
for determining the actual re-verification result which 
can be inferred from the amount of detected circular 
function-calls. The characteristic of circular function- 
call is specified in  definition 8. The decision rules 
used for determining the re-verification result are 
derived from theorems 1 and 2. The proofs of these 
theorems are presented in Appendix. 

Definition 8: W is a relation of re-verified sub- 
formulas in the re-verification process. This relation 
can be symbolized as follow: W = {(ƒs , ƒ′s′) • (ƒs ,ƒ′s′) 
∈ ϒ×ϒ | RV(ƒ,s)→RV(ƒ′,s′)}. The sequence of the 
re-verified sub-formulas can be enumerated as (ƒ0s0, 
ƒ1s1), (ƒ1s1,ƒ2s2), …, (ƒn-1sn-1, ƒnsn) where ∀i [1 ≤ i ≤ n 

⇒ (ƒi-1si-1,ƒisi)∈W ]. This sequence is called a re- 
verification path from ƒ0s0 to ƒnsn and it can be simply 
shown in the form of ƒ0s0, ƒ1s1, …, ƒn-1sn-1, ƒnsn. The 
re-verification path that the first sub-formula and the 
last sub-formula are the same sub-formula (ƒ0s0 = 
ƒnsn) is called a re-verification cycle. 

Theorem 1: Let ƒ is A(ƒ1Uƒ2), if there exists a 
re-verification cycle starting from ƒs0 which can be 
enumerated as ƒs0, ƒs1, ƒs2, ƒs3, …, ƒsn-1, ƒsn, ƒs0  then 
RV(ƒ,s0) = FALSE. 

Theorem 2: Let ƒ is E(ƒ1Uƒ2), if there are all 
re-verification cycles starting from ƒs0 which can be 
enumerated as ƒs0, ƒs1, ƒs2, ƒs3, …, ƒsn-1, ƒsn, ƒs0  then 
RV(ƒ,s0) = FALSE. 

 
 

5   Example 
We exemplify our verification technique by the 

example in figure 1. The base model M in figure 1(a) 
is evolved to the composite model M’ in figure 1(c) 
by the composition with additional aspect A in figure 
1(b). Sub-formulas “black” is true on state with black 
color and sub-formula “white” is true on state with 
white color. The property A(blackUwhite) holds in 
the base model, denoted M,s0    A(blackUwhite).  

 
Figure 1.  The evolution with aspect-oriented concepts . 

 
The SDG of this property is presented in figure 2. 

From the certainty analysis, we know that the 
sub-formula A(blackUwhite)s1 is uncertain after the 
evolution because there is an out-going transition 
added to state s1 and the sub-formula A(blackU 
white)s0 is also uncertain because it depends on the 
truth value of A(blackUwhite)s1 (from the condition 5 
of  definition 5). The dashed nodes in SDG indicate 
uncertain sub-formulas which must be re-verified.  

The state space of evolving model should be 
reduced before the re-verification. Considering the 
base model, since the A(blackUwhite)s0 and the 
A(blackUwhite)s1 are uncertain sub-formulas then 
states s0,s1 are the re-verified states (s0,s1 ∈Srv). States 
s2,s3 are the border states (s2,s3 ∈Sbd) because all sub- 
formulas in their labels are certain and there are 
transitions from states s0,s1 connecting to them. Thus, 
states s4,s5 can be reduced in this circumstance.  

  

(a) The base model  M  .    (b) The additional aspect  A . 
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s 2   

s 3   

s 4   
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(c) The evolving model  M 
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Figure 2. Sub-formula Dependence Graph. 

 
The re-verification process of this example can be 

viewed as the space of function-call in figure 3. The 
dashed box indicates a re-verification of uncertain 
sub-formula while the solid box indicates a re-verifi- 
cation of certain sub-formula. The re-verification of 
uncertain sub-formula is similar to conventional 
verification but the re-verification of certain sub- 
formula is different because the model checker can 
immediately get the truth value of that sub-formula 
without a deep re-verification and a modification to 
the label of state. Thus, the complexity in the 
re-verification process of our algorithm is less than 
the process of conventional algorithm. 

Since the circular function-call occurs in this 
re-verification, by theorem 1, then the re-verification 
algorithm will determine that A(blackUwhite) is false 
on state s0. Therefore, the property A(blackUwhite) is 
not preserved in the evolving model M’. 

 

 
Figure 3. The re-verification process. 

 
 
6   The Evolution of Property 

It is possible that the additional properties defined 
for responding to the additional features may be 
evolved from the original properties which hold in 
the base model. We define the informal semantic of 
property evolution as “the property ϕ′ is evolved from 
ϕ if and only if there exists sub-formula of ϕ within 
the proposition of ϕ′ ”. For instance, let the property 
ϕ = E(blackUwhite) holds on the base model M. The 

developers introduce the additional aspect to that 
base model for evolving to M’ and they need to know 
that the additional property ϕ′ = “AG(E(blackU 
white)∧EG(black) )” holds in the model M’ or not. 
The property ϕ′ evolves from ϕ because the E(black 
Uwhite) of ϕ is also within the proposition of ϕ′. In 
our approach, if the E(blackUwhite) is considered as 
a certain sub-formula, then the verification of ϕ′ with 
the re-verification algorithm is completed faster than 
the traditional algorithm because, rather than 
verification of all sub-formulas, the E(blackUwhite) 
is ignored from the verification. Thus, our approach 
is very useful for this circumstance. 

 
 

7   Conclusion 
This paper presents the software evolution based 

on the aspect-oriented concepts. The basic models for 
aspect-oriented software are proposed. We employ 
the model checking for a verification of that aspect- 
oriented software model. The contribution of this 
paper is the preservation checking technique called 
certainty -aware technique. We suggest that this 
technique should be utilized by the CTL model 
checker for reducing the complexity of verification 
process. This technique consists of two processes: 
certainty analysis and re-verification. With the 
certainty analysis, we can determine if sub-formulas 
are certain or not after the evolution. Only the 
uncertain sub-formulas must be re-verified in the 
re-verification process for their actual truth values. 
As discussed in section 6, this technique is not only 
useful for the software model evolution, but also the 
property evolution. Some sub-formulas in the 
evolving property need not be re-verified if they are 
considered as the certain sub-formulas. Thus, only 
the additional sub-formulas should be verified. 

We demonstrate the effectiveness of our technique 
with a simple example. For future works, the actual 
assessment of our approach should be performed by 
the experiment on real world applications. It is 
possible that there is an introduction of new actors 
after the evolution, but our approach is limited on 
only the case that the numbers of actors are not 
changed. Hence, the generality of our approach 
should be improved and the model checker which 
utilizes our technique should be implemented. 
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Appendix 

Lemma 1: Given a re-verification path that can be enumerated as f0s0, 
f1s1, f2s2, …, fn-1sn-1, fnsn. Suppose fnsn is re-verified by the re-verification 
function RV and it can be changed to be certain, then this re-verification 
path is not a re-verification cycle. Proof 

Step 1: By definition 7, a re-verification of fs that result s in either 
TRUE or FALSE must conform to one of following conditions: 

-  T(f)∉{EX, AX, EU, AU}, thus f can be evaluated immediately at 
state s. 

-  T(f)∈{EX, AX, EU, AU} and ∀f ′s′[RV(f , s) →RV(f ′,s′) ⇒ f ′s′]. 
Step 2: From the hypothesis, fnsn is uncertain at first then it can be 

changed to certain after the completion of RV(fn, sn). Therefore, from step 
1, fnsn must conform to one of the following conditions: 

-  T(fn)∉{EX, AX, EU, AU};  fn can be evaluated immediately at 
state sn. 

-  T(fn)∈{EX, AX, EU, AU}and ∀f ′s′ [RV(fn, sn) → RV(f ′, s′) ⇒ f ′s′]  

Step 3: By definition 8, we can enumerate the view of recursive 
function-call on this re-verification path as RV(f0,s0)→RV(f1,s1)→ 
RV(f2,s2)→RV(f3, s3)→ …→ RV(fn-1, sn-1)→RV(fn,sn). Since there is a 
recursive function-call from RV(f0,s0), f0 cannot be evaluated 
immediately at state s0, thus RV(f0, s0) requires the certainty of f1s1 from 
the re-verification result of RV(f1, s1) and so on. 

Step 4: Suppose fn cannot be evaluated immediately at state sn then 
all f ′s′ that RV(fn, sn)→ RV(f ′, s′) must be certain (from step 2). Since there 
is a recursive function-call of RV(f0,s0)→RV(f1,s1)  which indicates that 
f1s1 is uncertain, then f0s0 ≠ fnsn. Therefore, from definition 8, we can prove 
that the re-verification path is not a re-verification cycle. ♦ 

 
Lemma 2: Given a re-verification path that can be enumerated as fs0, 

fs1, fs2, …, fsm-1, fsm where f is totally A(f1Uf2) or f is totally E(f1Uf2). Suppose 
∃n [(0 ≤ n ≤ m) ⇒ RV(f2,sn)=TRUE]  then a sequence fs0, fs1, fs2, …, fsn-1, fsn is 
not a re-verification cycle. Proof 

From the hypothesis, we can assume RV(f2,sn)=TRUE. By definition 
7, fsn is changed to fsnwhenever RV(f,sn) completes the verification 
process. With the lemma 1, we can deduce that the sequence fs0, fs1, fs2, fs3, 
…, f sn-1, fsn is not the re-verification cycle because fsn can be changed to a 
certain sub-formula. ♦ 

 
Theorem 1: Let f is A(f1Uf2), if there exists a re-verification cycle 

starting from fs0 which can be enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0  
then RV(f, s0) = FALSE. Proof 

Step 1: The re-verification cycle that is starting from fs0 can be 
enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0 . By definition 8, we can illustrate 
the view of recursive function-call on this re-verification cycle as 
RV(f,s0)→RV(f,s1)→RV(f,s2)→RV(f,s3)→…RV(f,sn-1)→RV(f,sn)→RV(f,s0). 
Since state s0 is an immediate successor of sn and state si is an immediate 
successor of si-1 where 1≤ i ≤ n, then there exists a path (s0, s1,…, sn-1, sn , s0) in 
the state-transition graph.    (1) 

Step 2: The contrapositive of Lemma 2 is that if the sequence fs0, fs1, 
fs2, fs3, …, fsn-1, fsn is a re-verification cycle then ∀i [(0 ≤ i ≤ m) ⇒ RV(f2,si) = 
FALSE] ,where m ≥ n.  

Therefore, ∀i [(0 ≤ i ≤ n) ⇒ si    ¬f2].   (2) 
Step 3: From (1) (2) and Lemma 3.2 of [1], we can deduce that            

s0   ¬A(f1Uf2). Thus, we can conclude that RV(f,s0) = FALSE where f is 
A(f1Uf2). ♦ 

Note: Lemma 3.2 (from [1]) 
Suppose there exists a path (s0, s1, s2, …, sn, sk) in the state-transition 

graph such that 0 ≤ k  ≤ n and ∀i [0 ≤ i ≤n ⇒ si    ¬f2], then  sk    ¬A(f1Uf2). 
 
Theorem 2:  Let f is E(f1Uf2), if there are all re-verification cycles 

starting from fs0 which can be enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0  
then RV(f,s0) = FALSE.  Proof 

Let t is an immediate successor of s in a state-transition graph.  
From definition 7, 
(RV(f,s)=TRUE) ⇒ ( RV(f2,s)=TRUE ∨ (RV(f1,s)=TRUE ∧ ∃t 

[RV(f,t)=TRUE]) ) 
The contrapositive of above statement is 
(RV(f2,s)=FALSE ∧ (RV(f1,s)=FALSE ∨ ∀t[RV(f,t)= FALSE])) ⇒ 

(RV(f,s)=FALSE)  
So, if we can show RV(f2,s0)=FALSE and ∀t [RV(f,t)=FALSE] where 

t is an immediate successor of s0 then we can prove the RV(f,s0) = FALSE. 
Step 1: Each re-verification cycle that is starting from fs0 can be 

enumerated as fs0, fs1, fs2, fs3, …, fsn-1, fsn, fs0. The contrapositive of Lemma 2 
is that if the sequence fs0, fs1, fs2, fs3, …, fsn-1, fsn is a re-verification cycle then 
∀i [(0 ≤ i ≤m) ⇒ RV(f2,si) = FALSE] where m ≥ n.  

Therefore, RV(f2,s0) = FALSE.    (1) 
Step 2: For each re-verification cycle, ∀i [(1 ≤ i ≤n) ⇒ 

RV(f,si)=FALSE]) because the following two reasons: 
1.) ∀i [(1 ≤ i ≤ n) ⇒ RV(f2,si)=FALSE] (from above) and  
2.) ∀i [(1 ≤ i ≤ n) ⇒ fisi cannot change to fisi ] (by the 

contrapositive of Lemma 1, if the re-verification path is a re-verification 
cycle then fnsn cannot change to be certain by the re-verification function 
RV ). Thus, we can infer that ∀s1 [RV(f,s1) =FALSE] where fs1 is an 
immediate successor of fs in all re-verification cycles.   (2) 

From (1) and (2), we can prove that RV(f,s0) = FALSE. ♦ 


