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Abstract: - The spectral-domain method is applied to the analysis of the dispersive properties of the 
multilayered bilateral microwave structures printed on uniaxial anisotropic substrates. An alternative 
formulation of dyadic Green’s function is derived for bilateral microwave structures in an automatic way via a 
recursive process. The number of dielectric layers is arbitrary. Numerical results describing the propagation 
characteristics are presented and discussed for both electric and magnetic wall symmetries. It is found that 
certain structures have a very weak dispersion. This low dispersion feature signifies the fact that the quasi-
static analysis is adequate for designing practical microwave and millimeter-wave circuits. 
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1. Introduction 
Accurate knowledge of the propagation parameters 
of printed lines plays a vital role in the design of 
modern microwave and millimeter-wave integrated 
circuits. Planar transmission lines with anisotropic 
dielectric substrates offer wide possibilities in MIC 
applications [1]-[3]. Anisotropy is introduced 
unintentionally during the manufacturing process, or 
deliberately in order to obtain non-reciprocal 
devices, radar absorbers or serve to improve circuit 
performance. Neglecting this anisotropy induces 
errors during the design. Hence, rigorous dynamic 
techniques must be applied in order to get an 
accurate solution to secure the design and improve 
the CAD models.  

In this paper, effects of substrate anisotropy on 
the dispersion properties of multilayer bilateral 
microwave structures are investigated. The number 
of dielectric layers is arbitrary. The spectral-domain 
method (SDM) [4], is employed to derive the dyadic 
admittance Green’s functions. The (SDM) method 
procures a good compromise between efficiency, 
CPU time and memory requirements.  

A set of well-behaved basis functions are chosen 
to expand the current density on the strips, and the 

Galerkin method is used to find a matrix system of 
linear equations, whose determinant contains the 
propagation constant. Specially, two kinds of 
symmetries (electric and magnetic walls) are 
considered, with numerical data provided for both. 
Very good agreement between the calculated results 
and those available in the literature is found for open 
as well as shielded structures. It is found that certain 
structures have a very weak dispersion. This 
characteristic is very useful since a simple quasi-
static approach can be employed for accurate circuit 
designs in the high-frequency region. Further, the 
weak dispersion property is indeed very attractive 
for wide-band applications for designing practical 
microwave and millimeter-wave circuits. 
 
 
2. Formulation of the method  
The structure under analysis is a general bilateral 
microwave structure printed on multilayered 
anisotropic layers whose transverse section is 
depicted in fig. 1. The structure is enclosed in a 
perfectly conducting channel and assumed to be 
uniform in the z direction. All dielectric layers are 
assumed anisotropic and lossless.  



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 View of the multilayer anisotropic structure 

 
In view of the symmetry with respect to the 

planes PP’ and QQ’, we only need to consider four 
propagation modes: 
 
Even-even: PP’ magnetic wall, QQ’ magnetic wall. 
Even-odd : PP’ magnetic wall, QQ’ electric wall. 
Odd-even:  PP’ electric wall, QQ’ magnetic wall. 
Odd-odd:   PP’ electric wall, QQ’ electric wall. 
 

Thus, to compute the dispersive properties of this 
structure, it is sufficient to analyze only one quarter 
of the structure with appropriate boundary 
conditions corresponding to the four different 
modes. The even- and odd-modes correspond to an 
open-circuit [magnetic wall (MW)] and a short-
circuit [electrical wall (EW)], respectively. The 
dielectric layers shown in Fig. 1 are modelled by 
using a diagonal relative tensor [εr] for uniaxial 
anisotropic substrate as: 
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  with  εrx = εrz 

In order to find the dyadic Green’s function of 
the structure, the process starts with the 
decomposition of the EM field into TM-to-y  
and TE-to-y waves by introducing coordinate 
transforms [5] (fig. 1). The vector wave equations 
for the components of EM field within the uniaxial 
substrate can be written in their compact form from 
Maxwell’s equations as [6]: 
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where k0 is the free-space wave number.  

Thus, for the y-components of the EM fields: 
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The solutions of (3.a) and (3.b) are respectively: 
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2.1 Derivation of Dyadic Green’s function 
In this approach, the field formulation for β 
calculation is bypassed and a direct formulation of 
the eigenvalue equation is possible without 
knowledge of the field coefficients (Ai, Bi). All the 
field components are a superposition of 
inhomogeneous (in y) plane waves that are 
propagating in the direction θ of the z-axis, with 

( )δα=θ − /cos n
1  where δ= 22

n β+α . αn and β are 

respectively the spectral parameter and the phase 
constant. For each θ, hybrid waves may be 
decomposed into ΤΜ-to-y and ΤΕ-to-y in the (v,y,u) 
coordinate system. 
The tangential components of the EM field are 
expressed in a dielectric layer i (i = 1,…, N) from 
Maxwell’s equations versus Ey and Hy as: 
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The components of the EM field in the new 
coordinate system (v,y,u) are deduced via the 
relations of passage between the two coordinate 
systems as: 
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where δα=θ /cos n  and δβ=θ /sin . 
 
2.1.1. Case of TMy modes 
The boundary conditions on the metallised interface 
can be expressed in the (v,y,u) coordinate system as: 

vum1um J~H~H~ =−+                                        (7.a) 

u1vmvm J~H~H~ =− +                                        (7.b) 
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0E~E~ vm1vm =−+                            (7.d) 

where uJ
~  and vJ~  are the transformed currents 

related to xJ~  and zJ
~  via (6). We define the TMy 

equivalent admittance seen in the plane of 
metallisation ( at y=Hm) by: 
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Yv is the input admittance seen in the metallised 
interface due to all transmission line steps of length 
hj [4]. These steps can be terminated by electric 
walls (Dirichlet’s case) or magnetic walls 
(Neuman’s case). Equation (8) can be expressed 
according to (7.a) and (7.d) as: 
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Ysup and Yinf are respectively the input admittance 
seen from top and bottom of the metallised interface 
(m) Thus, we deduce the equivalent admittance at 
y=H1 (fig. 1) by: 
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The parameter TMy
1vη  can be interpreted as the 

TMy characteristic admittance in layer 1 by analogy 

with the transverse transmission lines. If we 
generalise to the interface j, one obtain the following 
recursive process for LSM
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If we generalise to the interface y=Hm, one can 
obtain the following recursive process for TMy
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)hsinh(S)hcosh(

)hcosh(S)hsinh(
Y~

1j
b

1j
TMy

)1j(v
b

1j1j
a

1j
a

1j

1j
b

1j
TMy

)1j(v1j
a

1jTMy
)1j(v

TMy
supv

+++++++

+++++
+ γγ+γγ

γ+γ
η−=  

                    (13) 

with : TMy
)1j(v

a
1jTMy

)2j(v
TMy

)1j(v Y~S
+

+
++ η

γ
−=           (14) 

TMy
vY~  is obtained by iterating (11) (from j=1 to 

m) and (13) (from j=m+1 to N) over each section of 
the transmission line to determine 

supvinfv Y~ and  Y~  

respectively and summing them. 
 
2.1.2. Case of TEy modes 
We define the TEy equivalent admittance seen in the 
metallisation plane (y=Hm) by: 
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which can be written according to (7.b) and (7.c) as: 
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If we generalise to the interface j, one can obtain 
the following recursive process for TEy

infuY~  : 
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By following the same procedure, one can obtain 
the following recursive process for TEy

supuY~ : 
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TEy
uY~  is obtained by iterating (16) (from j=1 to 

m) and (18) (from j=m+1 to N) over each section of  
the transmission line to determine

supuinfu Y~ and  Y~ , 

respectively and summing them. 
 
2.2. Deduction of dyadic Green’s function 
Once the admittance parameters vu Y~  ,Y~  are known 
for the TEy and TMy modes, the current form is 
obtained by mapping from (u,v) to (x,z) coordinate 
system for the spectral wave corresponding to each 
θ given by αn and β. The results are as follows: 
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where P is the matrix of passage between the two 
coordinate systems which is given by: 
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Finally, a set of matrix equations can be formed 
yielding the expression for the admittance Green’s 
function: 
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The Dyadic Green’s function [G] can be deduced 
simply by inverting the matrix Y. So, the problem of 
determining [G] reduces to that of finding the 
admittance parameter Y for the particular structure. 
This shows the simplicity of applying the spectral 
domain technique. 
 
 
3. Application of Galerkin technique 
To find the propagation constant, a procedure based 
on the Galerkin technique is used, by first expanding 
the unknown currents Jx and Jz of known basis 
functions (Jxp and Jzq): 
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and then, substituting xJ~  and zJ~  into (20) and after 
taking the inner products with Jxp’ and Jzq’, a set of 
algebraic equations is derived: 
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The right hands of (21) have been eliminated in 
the Galerkin process through the application of 
Parseval’s theorem. The simultaneous equations are 
then solved for the phase constant β by setting the 
determinant of the coefficient matrix equal to zero 
and search for the root of the resulting equation. 
 



4. Numerical results 
In order to confirm the adequate choice of basis 
functions, we have analysed the convergence of the 
effective permittivity of the broadside-inverted 
microstrip line on boron nitride substrate. Figures 2 
and 3 show that 100 Fourier terms and 2 basis 
functions are sufficient to assure a good 
convergence. Note also that the narrow lines 
(w/h2<<1) require more spectral terms. Therefore, 
for large bands (w/h2>>1) the convergence is faster 
and the CPU time is reduced. 
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Fig. 2 Convergence of the effective permittivity 
versus the spectral rays. 
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Fig. 3 Convergence of effective permittivity versus 

the number of basis functions. 
 

Numerical results for lithium niobate are also 
shown in Fig. 4. In this case, it is quite clear that 
higher values of the permittivity result in a 
substantial variation of the propagation constant. 
Computed results show good agreement with [7]. 
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Fig. 4 Dispersion chart of broadside-inverted 
microstrip line on niobate lithium substrate. 

 
Figures 5 and 6 show the variation of the 

effective permittivity on boron nitride and saphir 
substrate respectively. Note that change is negligible 
over the frequency range from 1 GHz to 30 GHz. 
The obtained results agree well with [7].  
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Fig. 5 Effective permittivity of broadside-inverted 
coupled microstrip line on boron nitride substrate. 
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Fig. 6 Effective permittivity of broadside-inverted 

coupled microstrip line on saphir substrate. 
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This low dispersion feature signifies the fact that 
the quasi-static analysis is adequate for designing 
practical microwave and millimeter-wave circuits. 
In this case, the modeling of the structure in quasi-
static mode would require less efforts of 
computation with consequently reduced CPU times.   

Figures 7 (a-b) illustrate the variation of 
effective permittivity for broadside edge-coupled 
structures printed on Epsilam 10 substrate. Note that 
the even-even and odd-even modes are relatively 
insensitive to the dispersion phenomenon in contrast 
to the even-odd and odd-odd modes where the 
dispersion is significant particularly for large strips 
(w/b >>1). 
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Fig. 7 Effective permittivity versus frequency of 

broadside edge-coupled inverted microstrip line on 
Epsilam 10 substrate. a)- For odd-odd and odd-even 

modes, b)- For even-odd and even-even modes. 
 

Note also that the values of the effective 
permittivity for odd-even and even-even modes 
decreases versus w/b but increases for the two other 
modes. 

5. Conclusion 
In this paper, the dispersion characteristics of the 
multilayered bilateral microwave structures with 
uniaxial anisotropic substrate have been formulated 
using the spectral domain technique. The Galerkin 
method was employed to find the propagation 
constant. Numerical results for effective dielectric 
constants and dispersion charts have been presented, 
including the convergence behaviour.  

It has been found that broadside-microstrip 
structures present very small dispersion, which 
confirms the adequacy of the quasi-static analysis 
for high-frequency circuit design purposes. This 
weak dispersion, together with the inherent features 
of broadband, tigh-coupling and large mode velocity 
ratio, makes the broadside-coupled structure very 
attractive for MIC and MMIC applications.  
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