PAGE

FPGA Based Data Coding
ALI M. Al-HAJ
Department of Computer Engineering,
College of Electrical Engineering,
Princess Sumaya University for Technology,

Al-Jubeiha P.O.Box 1438, Amman 11941,
JORDAN

Abstract — In this paper, we describe an efficient high-speed implementation of the well-known arithmetic coding algorithm. The implementation is based on mapping the multiply-intensive computation of the arithmetic coding algorithm, on the embedded-multiplier rich, Xilinx Virtex FPGAs. The reported configurable hardware implementation accelerates the execution speed of the arithmetic coding algorithm, thus facilitating a wider usage of the algorithm in real-time coding applications such as audio and video compression.

Key words: — Arithmetic coding algorithm, Configurable hardware, Virtex FPGAs,

 Performance acceleration.
1 Introduction
Arithmetic coding is a well-known method for lossless data compression. It can achieve higher compression ratios than the classical Huffman coding method because its encoding mechanism reflects the entropy of the source message [1]. In fact, the attractive features of arithmetic coding has led to its adaptation in the JPEG2000 still image compression standard which has been in use in a diversity of applications, such as the internet, color facsimile, printing, scanning, digital photography, remote sensing, mobile applications, medical imagery, digital library and E-​commerce [2]. However, one major drawback of arithmetic coding is its computational complexity, which is reflected by the multiply operations needed to encode each symbol [3]. Therefore, to meet the intensive and real-time computational demands of the arithmetic coding algorithm, software and hardware implementations have been proposed.

Software implementa​tions of arithmetic coding involve complicated procedures for sending output codes, updating coding range, and resolving the underflow problem [4]. Moreover, the high level code is usually executed on Von Neumann sequential computers, making it impractical and too slow for real-time applications. To overcome this problem, several parallel computers that meet the computational requirements of arithmetic coding have been proposed [5]. However, arithmetic coding is mostly needed to be embedded in real-time codec systems, and thus a single chip hardware implementation is more desirable than a multi-chip parallel system implementation. Alternatively, single-chip VLSI architectures have been also proposed for the implementation of arithmetic coding [6,7], however, custom VLSI circuits are inherently inflexible and their development is costly and time consuming, and thus they are not an attractive for implementing the arithmetic coding method.
In this paper, we propose field programmable gate arrays (FPGAs) as a new attractive implementation platform for arithmetic coding [8]. In fact, FPGAs maintain the advantages of the custom functionality of VLSI devices, while inheriting design flexibility and adaptability of software implementations. The paper is organized as follows. In the following section we give an overview of the general architecture of Virtex FPGAs which will be used as the platform of the reported implementation. The algorithmic behavior of arithmetic coding is described in section three, followed by its FPGA functional simulation and performance results. Concluding remarks are given in the section four.

2 Field Programmable Gate Arrays
A Field Programmable Gate Array (FPGA) is an integrated circuit that can reconfigured in only a fraction of a second. With each reconfiguration, an integrated circuit can perform a different function. From several FPGA families available on the market, we have chosen the high-performance Virtex family produced by Xilinx Inc [9]. A Virtex FPGA device consists of thousands of universal blocks, known as Configurable Logic Blocks (CLBs), connected using programmable interconnects, as shown in Figure 1. Reconfiguration is able to change a function of each CLB and connections among them, leading to a functionally new digital circuit. A simplified internal structure of a CLB slice (1/2 of a CLB) in the Virtex family is shown in Figure 2. Each slice contains a small block of combinational logic, implemented using programmable look-up tables, and two one-bit registers . Additionally, Virtex FPGAs contain dedicated memory blocks called Block Select RAMs. We programmed the Viretx FPGA using the Verilog hardware description language [10]. Verilog HDL has capabilities to describe the behavioral nature of a design, the data flow of a design, a design’s structural composition, delays and a waveform generation mechanism. Models written in this language can be verified using a Verilog simulator. We used the Xilinx Foundation Series package to produce physical implementations on the Viretx FPGA.

[image: image1.wmf] Figure 1. Simplified Virtex Architecture.

[image: image2.wmf]
 Figure 2. Simplified Internal configurable slice.

 3 Arithmetic Coding Implementation
In arithmetic coding an input data is represented by a range of real numbers between 0 and 1 that covers the whole range of probabilities for the input data. The initial range is specified by its two end-point values, and will be narrowed to a portion allocated to the symbol by its corresponding cumulative probability interval, every time a symbol is encoded. The arithmetic coding procedure is the calculations of the two end-point values of the cod​ing range for each symbol encoded. The output codes are then all the bits used to represent the lower end​point value in the final coding range. After the initial range is set up, a statistical model is specified which comprises cumulative probability inter​vals for all symbols in the alphabet [11]. The decoding process is a mirror of the encoding process [12].
3.1 Encoding and Decoding Equations
Arithmetic coding equations of both the coding and decoding processes are stated below. A detailed description of the equations can be found in [13, 14].

Encoding Procedure

Hi+1 = Hi + Ri . Si(k) (1)

Li+1 = Ci + Ri . Si(k) (2)

Ri = Hi - Li (3)

Here, Ri is the length of the subinterval at iteration i , Hi the high end of the interval, Li the low end of the interval, Pi(k) the probability of symbol k at iteration i and Si(k) its cumulative probability, which is defined as the summation of all probabilities of the symbols that precede it in the table.
Si(k) = Σ Pi(j) (j = to k-1) (4)
A normalization of the subinterval is carried out by shifting R , a number of bits t, in such a way that R remains in the range [1, 0.5]. The low part of the subinterval L, is also shifted t bits. After normalization

ri+1 = 2 t . Ri+1 (5)
li+1 = 2 t . Li+1 (6)

where ri+1 and li+1 are the shifted values of Ri+1 and Li+1 , which will be used in the next iteration. After shifting Li+1 , t bits are sent out as part of the coded sequence. The size of the compressed code is given by the number of bits needed to specify a point inside the final interval. When low precision is used the size increases. However, this is compensated by the great saving of hardware and the increment in processing speed.

 Decoding Procedure
The decoding process is the opposite of the encoding process. We use the low end value of the initial subinterval it for decoding the original sequence of symbols.

Ri+1 = Ri . Pi(k) (7)

Li+1 = Li - Ri . Si(k) (8)

The product Ri . Si(k) must be calculated for every symbol k These values are compared with Li , the signs of the comparisons are tested, and the decoded symbol is then selected.
3.2 FPGA Implementation

The arithmetic coding and decoding equations stated above are best implemented using 16-bit integer math. Floating-point math is neither required nor helpful, since what is really required is an incremental transmission scheme in which fixed-size integer state variables receive new bits at the low end and shift them out at the high end, forming a single number that can be as long as necessary, conceivably millions or billions of bits. This reasoning justifies the use of FPGAs for efficient implementation of arithmetic coding, since FPGAs are best suited for fixed point arithmetic. Therefore, the arithmetic coding equations were implemented by the Verilog hardware description language, and verified by its functional simulator.
As an FPGA implementation example, we have encoded and decoded the ASCII sequence 'b d e a c' as described by the equations stated in the previous subsection. An illustration of encoding and decoding of the sequence is have been reported by [14]. First Table 1 lists the probabilities of the multi-alphabet source. The alphabet contains the characters; a,b,c,d,e and f.
 [image: image3.png]symbol | prob. | prob. | interval
A o 0.0
b [oL 0.1
o2 02
a3 04
e o1 107,08
T o2 03,10

Table 1. Source Alphabet and Probabilities [14].
The encoding and decoding processes of the ASCII sequence are shown in Figures 3, and 4.

[image: image4.png]017 0164 01613016112

ST F

/f
dtd fd fa
014 0161 0161 015106

;

)

; l
3
&

Figure 3. Encoding of the sequence 'bdeac' [14].

[image: image5.png]0164 01613

Figure 4. Decoding of the sequence 'bdeac' [14].
The simulation waveform of the arithmetic coding and decoding processes is displayed in Figure 3. The waveform shows the coding and decoding of the ASCII sequence shown in the topmost signal of the waveform.

The arithmetic encoder’s operation on the input string starts by the applying start signal, third signal form the top. The output of the FPGA arithmetic encoder was calculated by the FPGA as illustrated by second signal from the top. The encoder’s output was then fed to the decoder, and the decoding process was triggered using the decode signal, the fourth signal form the top. The decoder’s FPGA circuit output matches the original string. The decoded output is shown in the fifth signal form the top signal, and as seen, it corresponds exactly to the topmost original input ASCII sequence.
The waveform proves that the FPGA implementation of the arithmetic coding and decoding circuits operate properly. We used uniformly distributed 16-bit random input samples to generate the simulation waveform. We also maintained sufficient precision of the intermediate and output computations, since allocating sufficient bits to the intermediate and output computations is a necessary step to decode the original pattern correctly. If we allocate fewer bits than necessary, the output of the arithmetic decoder will not be the same as the initially encoded pattern.
 [image: image6.png]

 Figure 5. FPGA simulation waveform.
3.3 Performance Results
We carried out the physical implementation of the arithmetic coding algorithm using a prototyping board called XSV-300 FPGA Board. The board is developed by XESS Inc. [15], and is based on a single XCV300 FPGA chip. This chip contains 3072 slices (322,970 gates), where each slice contains 4-input, 1-output LUTs and two registers. The LUTs allow any function of five inputs or two functions of four inputs to be created within a CLB slice. Furthermore, The chip can operate at a maximum clock speed of 200 MHz. Performance is evaluated with respect to two metrics; throughput (sample rate) and is given in terms of the clock speed, and device utilization, and is given in terms number of logic slices used by the implementation.
The speed performance of the arithmetic coding and decoding algorithm was recorded to be around 150 ns corresponding to around 10 MHz, and the hardware utilization was recorded to 1200 slices, corresponding to 40 % of the 3072 total number of slices of the Virtex chip. Also to measure the effectiveness of implementing the arithmetic coding algorithm on FPGAs, we coded the transforms in C, and executed the corresponding program on a conventional PC powered by an 800 MHz Pentium III processor. The execution time was recorded to be around 200 sec, which is far larger than the 0.150 sec needed by the FPGA. In other words, the execution speed on the FPGA is more than one thousand fold faster than the conventional software implementation.

4 Conclusions
In this paper we reported on an FPGA based implementation of the arithmetic coding algorithm. Performance results demonstrate the effectiveness of the implementation. The results also suggest that FPGAs constitute an excellent platform for real-time implementations of arithmetic coding. Such real-time implementations will increase the usage of arithmetic coding in audio and video compressions application.
 References
 [1]. M. Nelson, and J.Gailly , The Data
 Compression Book , Second Edition 1996
 by M&T Books.
[2]. D. Taubman and M. Marcellin. JPEG2000: Image Compression Fundamentals, Standards, and Practice. Kluwer Academic Publishers, November, 2001,
[3] G. G. Langdon. An introduction to arithmetic

coding. IBM Journal of Research and

 Development, 28(2):135{149, 1984
[4]. E.Sibley, “ Arithmetic Coding for Data Compression,” ACM Trans.on Comm. Vol.30, No.6, 1987.

[5]. P.Howard, and J. Vitter, “ Parallel Design of Arithmetic Coding,” IEE Proc. Comput. Digit. Tech, Vol. 141, No. 6, November 1994.
[6]. K. Parhi, VLSI digital signal processing systems. US: John Wiley & Sons, 1999
[7]. M. B_oo, J. D. Bruguera, and T. Lang. A VLSI architecture for arithmetic coding of multi-level images. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing., 45(1):163{168, 1997.
[8]. R. Seals and G. Whapshott, Programmable Logic: PLDs and FPGAs. UK: Macmillan, 1997.
[9]. Xilinx Corporation. Virtex Data Sheet, 2000.
 [10]. S. Palnitkar, Verilog HDL, SunSoft Press,
 1996.
[11]. P. Howara, J.Vitter, Arithmetic Coding for Data Compression, IEEE Trans. Comm., Vol.82, No.6, June 1994.
[12]. J. Jiang, “Novel Design of Arithmetic Coding for Data Compression”, IEEE Proc-Comput. Tech, Vol.142,No.6, November 1995.
[13]. I.Witten, A.Moffat, and T.Bell, Managing Gigabytes, Morgan Kaufmann Publishers, 1999.
 [14]. R. Osorio and J. Brugera, " New model for

 arithmetic coding/decoding of multilevel images
 based on a cache memory" Technical report
 HPCG – 98-007, University of Santiago de

 Compostela, Spain. 1998.
 [15]. Xess Corporation. www.xess.com.2002.

PAGE
3

_1100303969.dwg

_1116032865.dwg

