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Abstract: - The incrementally extensible hypercube (IEH) network, a variant of the hypercube, is defined for 
every positive number and has been widely discussed.  However, some properties of the IEH network are 
incorrect and have been misused.  Moreover, no deterministic fault-tolerant routing has been proposed.  In this 
paper, we first simplify the construction of an IEH network.  Then we point out the mistakes in the topology of 
the number of edges, the diameter, and the shortest paths.  We present the correct results and propose a novel 
optimal routing algorithm.  Moreover, a deterministic fault-tolerant routing algorithm for the IEH network is 
proposed.   
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1   Introduction 
With the rapid growth of the amount of information, 
interconnection networks with parallel processing 
have become more important than before.  Among 
various efficient interconnection networks, the 
hypercube with low latency, high regularity, and 
good fault-tolerance has attracted many researchers 
[1, 8].  However, the number of nodes in a hypercube 
is restricted to powers of two.  Many variants without 
this restriction have been widely studied [1, 2, 4, 5, 7, 
9].   

In 1992, Sur and Srimani first proposed the 
incrementally extensible hypercube (IEH) network as 
a variant of the hypercube [10].  Unlike a hypercube 
restricted to n2  nodes, the IEH network can be 
constructed for an arbitrary number of nodes.  An 
IEH network consists of different size of hypercubes, 
called subcubes, connected by Inter-Cube (IC) edges, 
and thus preserves several advantages of the 
hypercube such as a low diameter, good fault- 
tolerance, a simple routing algorithm, and good 
regularity.  There are many extensive researches in 
the IEH network [3, 6, 11, 12].  However, some 
proposed properties, such as the diameter and the 
number of edges, of the IEH network are unsatisfied 
or incorrect, and have been misused for a long time 
[10].  Besides, the claimed shortest routing is not 
optimal and the proposed fault-tolerant routing is 
non-deterministic [11, 12]. 

In this paper, we first simplify the construction 
of an IEH network.  Then we point out the pitfalls of 

the properties of IEH networks and present the 
correct ones.  Moreover, we propose a novel optimal 
routing and a deterministic fault-tolerant routing for 
the IEH network.  The rest of this paper is organized 
as follows.  In Section 2, we introduce the 
construction of IEH networks and discuss their 
topologies and properties.  We propose a novel 
optimal routing for the IEH network in Section 3 and 
a deterministic fault-tolerant routing for the IEH 
network in Section 4.  Finally, the conclusion of this 
paper is presented in Section 5. 
 
 
2   IEH Networks 
In this section, we describe a simplified construction 
of the incrementally extensible hypercube (IEH) 
network.  In this paper, we consider 122 +<< nn N  
and let 201 ),,,( cccN nn L−=  be the binary 
representation of N  where 1=nc  and }1,0{∈ic  for 
other i .  Then the IEH network )(NG  with N  
nodes can be recursively constructed by the 
following algorithm [11]. 
 
The CONSTRUCTION Algorithm 
Input: a positive integer N . 
Output: the IEH network )(NG . 
 
1. For each 1=ic , construct a subcube iH . 
2. Label each node in iH  as an ( 1+n )-bit binary 



representation 011011 bbi LL −  where the last i  
bits are the same as an i -cube, and the prefix is 

in −  1’s followed by a single zero. 
3. Find the minimum i  such that 1=ic .  Set ij =  

and ij HG = .  
4. Recursive construction.   

Set 1+= ii . 
while ni ≤  
 if 1=ic  then  

Connect the node 01111 bbb jj LL −  in jG  
to the following node by a 1-IC edge: 

01

1

1110111 bbb jj

jiin

L
876
L

876
L −

−−−

,  
and to the following 1−− ji  nodes in 

iH  each by a 2-IC edge: 

01

1

110110111 bbb jj

jiin

L
48476
LL

876
L −

−−−

, 
where there is a single 0 among the 
middle 1−− ji  bits. 

Set ij =  and let jG  be the composed 
graph obtained in the above step. 

 endif 
 1+= ii . 
endwhile 

5. Finally the IEH network )(NG  is obtained. 
 

Note that all IC edges can be partitioned into 
two types: 1-IC edges and 2-IC edges according to 
the Hamming distance between their endpoints.  
Moreover, including the cube-edges of each subcube, 
each edge of an IEH network connects nodes with 
Hamming distance of 1 or 2.  In particular, each node 
of an IEH network has at most one 1-IC edge to each 
subcube.  Figure 1 shows the IEH network )11(G  
where the dashed lines denote 1-IC edges, the bold 
solid lines denote 2-IC edges, and the other solid 
lines denote the cube-edges. 

Figure 1.  The IEH network )11(G . 

In the following, we consider the properties of 
the IEH network.  Firstly, we count the number of IC 
edges from a node v  in jH  to subcube iH  for ji > .  
In [10], the authors claimed that there are ji −  IC 
edges if 1>− ji .  However, it is incorrect since in 

)11(G  there are only two IC edges from the node 
1110 in 0H  to subcube 3H  shown in Figure 1.  We 
correct the statement as follows. 

 
Lemma 1.  Let v  be a node in jH  of an IEH 
network )(NG .  Then there are ki −  IC edges from 
node v  to iH  where k  is the largest number such 
that ikj <≤  and 1=kc .  
Proof.  By the construction of the IEH network.  � 
 

The near regularity of the IEH network has been 
implicitly derived by its connectivity and its 
maximum degree [10-12].  We present a lemma of 
the minimum degree such that the near regularity can 
be directly obtained. 

 
Lemma 2.  (See [11]) The node connectivity of the 
IEH network )(NG  is n . 
 
Lemma 3.  (See [11]) The maximum degree of the 
IEH network )(NG  is 1+n . 
 
Lemma 4.  The minimum degree of the IEH network 

)(NG  is n . 
Proof.  Let 0121 ≥>>>>= − jjjjn kk L  for all 

1=
ijc .  Then every node v  in subcube 

ijH  has ij  
cube-edges, at most one backward IC edge 
connecting to 

1−ijG , and other ijn −  forward IC 

edges where there are ii jj −+1  IC edges connecting 
to 

1+ijH , 12 ++ − ii jj  IC edges to 
2+ijH , and so on by 

Lemma 1.  Hence the minimum degree of the IEH 
network )(NG  is n . � 
 
Theorem 5.  The IEH network )(NG  is almost 
regular. 
Proof.  By Lemmas 3 and 4.  � 
 

Next, we consider the diameter of the IEH 
network, which denotes the worst delay of 
transmission in a network.  The diameter of the IEH 
network )(NG , denoted by ))(( NGD , is claimed as 

1+n  in [11].  However, it is incorrect, since the 
diameter of )11(G  is 3, not 4, shown in Figure 1.  We 
correct the diameter of the IEH network as follows. 
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Theorem 6.  The diameter of IEH network )(NG  is 
either n  or 1+n .  
Proof.  Since each node in )(NG  is labeled by 1+n  
bits, the Hamming distance between any two nodes is 
at most 1+n .  Since every edge in the IEH network 
changes either one or two bits, we can obtain 

1))(( +≤ nNGD .  On the other hand, the diameter of 
subcube nH  is n , and thus nNGD ≥))(( .  Note that 

nGD == 3))11((  and 13))6(( +== nGD .  Hence 
the diameter of the IEH network )(NG  is either n  or 

1+n . � 
 
 
3   A Novel Optimal Routing 
In this section, we discuss the problem of optimal 
routings in the IEH network.  A shortest routing is 
claimed and proposed in [12].  However, the 
proposed routing is not shortest.  Consider the 
transmission from node 1110 to the node 0001 in the 
IEH network )13(G  shown in Figure 2.  Based on the 
proposed routing algorithm [12], the routing path 
with transmission delay 4 is as follows. 

1110  0110  0111  0101  0001. 

However, there is a shorter path with transmission 
delay 3 as follows. 

1110  1000  0000  0001. 

Figure 2.  The IEH network )13(G . 
 

Next, we cite the following definition to locate 
the subcube that a node belongs to.  
 
Definition 7.  (See [12]) Let )(vρ  be the length of the 
1-prefix in the binary representation of the node v . 
 
Lemma 8.  (See [12]) A node v  in an IEH network 

)(NG  must belong to the subcube )(vnH ρ− . 
 

In the following, we propose a novel optimal 
routing in the IEH network.  Let s  be the source and 
d  be the destination of a transmission in an IEH 
network )(NG .  Without loss of generality, assume 
that )()( ds ρ≥ρ .  The main idea of the optimal 
routing is to route along 2-IC edges sequentially if 
possible. 
 
The OPTIMAL ROUTING algorithm 
Input: The IEH network )(NG  with ,,( 1−= nn ccN  

20 ), cL , source s , destination d . 
Output: An optimal routing between s  and d . 

 
Step 1. Set 01 hhhdsh nn L−=⊕= .  /* Compute the 

Hamming distance h  between s  and d . */ 
Step 2. Find ij  such that )(snji ρ−= .  /* Find the 

subcube that the node s  belongs to. */ 
Step 3.  

while 0≠h   
if )()( ds ρ≠ρ  then 

if 1=
ijh  and at least one 1=th  for ijt <  then 

Consider the following three cases. 
(i) /* Find the backward 2-IC edge, if exist. */ 

For 1−>> ii jlj , if 1=lh  and the node z  

which is different from s  on the bits ij  
and l  exists, then transfer the message to 
z  by the 2-IC edge.    
Set zs =  and return to Step 1. 

(ii) /* Find the backward 1-IC edge, if exist. */ 
If the above l  does not exist and if the 
node z  which is different from s  on the 
bit ij  exists, then transfer the message to 
z  by the 1-IC edge.    
Set zs =  and return to Step 1. 

(iii)  /* Find a cube-edge. */  
Let l  be the minimum number such that 

1=lh  and 0≥> lji .  Then transfer the 
message to the node z  which is different 
from s  on the bit l  by the cube-edge.  
Set zs =  and return to Step 1. 

else  /* Find a forward edge. */ 
Consider the following two cases. 
(i) If there exists a maximum m  such that 

1=mh , for ii jmj >>+1 , then transfer the 
message to the node z  which is different 
from s  on the bits 1+ij  and m  by the 2-IC 
edge.  Set zs =  and return to Step 1. 

(ii) If the above m  does not exist, then transfer 
the message to the node z  which is 
different from s  on the bit 1+ij  by the 
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1-IC edge.  Set zs =  and return to Step 1. 
else  /* s  and d  are in the same subcube 

ijH . */ 
The shortest path is the same as that in the 

subcube.   
endwhile 
 

Theorem 9.  Our routing algorithm is optimal. 
Proof.  According to our routing algorithm, consider 
the node s  in the subcube iH .  For two specific bits, 
if s  does not have any 2-IC edge which can change 
those bits, then nor does any node in jH  for ij >  by 
the construction of the IEH network.  Hence the 
proposed routing algorithm is optimal.  � 
 
 
4   A Fault-Tolerant Routing 
In this section, we discuss the fault-tolerant routing in 
the IEH network with a single faulty node.  Sur and 
Srimani proposed several node disjoint paths such 
that we can choose one of them as the fault-tolerant 
routing.  In the following, we propose a deterministic 
fault-tolerant routing algorithm. 

Let f  be the faulty node in the IEH network.  A 
node is called a suitable node if it reduces the 
Hamming distance between the destination and the 
present node.  The concept of a deterministic 
fault-tolerant routing algorithm is based on the idea 
of detouring the faulty node in the original shortest 
path by finding another suitable node if possible.  The 
fault-tolerant routing algorithm is as follows. 
 
The FAULT-TOLERANT ROUTING algorithm 
Input: N , source s , destination d , faulty node f . 
Output:  A fault-tolerant routing path.  
 
Follow the optimal routing algorithm until the next 
node is the faulty node.  Let s′  be the present node.  
Without loss of generality, assume that )()( ds ρ≥′ρ . 
 
Case 1. )()()( dsf ρ≥′ρ≥ρ .  /* The optimal routing 

uses a backward edge from s′  to f . */ 
Consider that the node f  does not exist, and 

continue to find the next node. 
Case 2. )()()( dfs ρ>ρ>′ρ .  /* s′ , d  and f  are in 

distinct subcubes. */  
Consider the following two situations. 
(i) If the optimal routing uses a 2-IC edge from s′  

to f , then we can find another 2-IC edge or a 
1-IC edge to a suitable node (See Figure 3). 

(ii) If the optimal routing uses a 1-IC edge from s′  
to f , then continue to find a maximum m  such 

that 1=mh , for 12 ++ >> ii jmj  (See Figure 4). 
Case 3. )()()( dfs ρ=ρ>′ρ .  /* d  and f  are in the 

same subcube other than s′ . */ 
Consider the following two situations. 
(i) Choose a suitable node if exists in the present 

subcube (See Figure 5). 
(ii) If there is no suitable node, then choose a node 

that increases the Hamming distance (See 
Figure 6). 

Case 4. )()()( dfs ρ=ρ=′ρ .  /* s′ , d , and f  are 
in the same subcube. */ 

The fault-tolerant routing is the same as that in the 
subcube. 

 
Figure 3 shows the shortest path and the fault- 

tolerant routing from the node 1110 to the node 0000 
in the IEH network )13(G  with the faulty node 1000. 

Figure 3.  The shortest path routing ( ) and  
          the fault-tolerant routing ( ). 

 
Figure 4 shows the shortest path and the fault- 

tolerant routing from the node 1110 to the node 0010 
in the IEH network )13(G  with the faulty node 1010. 

Figure 4.  The shortest path routing ( ) and  
           the fault-tolerant routing ( ). 

 
Figure 5 shows the shortest path and the fault- 

tolerant routing from the node 1110 to the node 0001 
in the IEH network )13(G  with the faulty node 0010. 

Figure 5.  The shortest path routing ( ) and  
           the fault-tolerant routing ( ). 

 
Figure 6 shows the shortest path and the fault- 

tolerant routing from the node 1001 to the node 0101 
in the IEH network )13(G  with the faulty node 0001. 
 

The proposed fault-tolerant routing does work 
even though the faulty node is unknown.  
 

1110  1000  0000 
          1010  0010  0000 

1110  1010  0010 
          0110  0010 

1110  1010  0010  0011 
              1011  0011 



Figure 6.  The shortest path routing ( ) and  
           the fault-tolerant routing ( ). 

 
Theorem 10.  The fault diameter is at most 2 more 
steps than the shortest path. 
Proof.  As detouring the faulty node, if a suitable 
node is used, then the fault-tolerant routing is at most 
one more step than the shortest path, and at most 2 
more steps otherwise.   � 
 
 
5   Conclusion 
In this paper, we first simplify the construction of the 
IEH network.  Then we point out the mistakes in the 
previous papers and correct the topology of the 
number of edges, the diameter.  We also propose a 
optimal routing algorithm and a deterministic 
fault-tolerant routing algorithm for the IEH network. 
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