An Agent Model for Computer Performance Enhancement
POONPHON SUESAOWALUK

RAMAKOTI SADANANDA

Computer Science & Information Management Program,

School of Advanced Technologies,

Asian Institute of Technology, Patumthani 12120,

THAILAND

Abstract: A scenario is envisaged in which agents have tasks to perform and are in a position to exchange tasks to improve their performance, and thus perhaps affect the overall performance of the system. Our model uses two computing machines with their usual resources, and with random initial jobs to be processed. Their performance is dependent not only on absolute total load but also on how much of each machine’s resources are in demand, thus giving scope for the beneficial exchange of jobs. This paper describes the development of a negotiation mechanism and a greedy method is used as a heuristic for job exchange between machines and measurement of system performance. The concept may be extended to multiple machines that act as agents exchanging resources and tasks.

Key-words:- Agent, Negotiation, Resource diversity, Rational Utility, System performance, Load balancing.
1. Introduction

In the computing system, there are two important objectives in managing resource. First, the available resources should be fully utilized as much as possible to get the greatest return in an investment, second and even more important, the available resources should be fully utilized to obtain the greatest quality of service to all those at the user’s end of the service. To accomplish these objectives, in the area of computing resource management, several research efforts have been reported. The research on agents has taken a number of directions. With the emergence of internet and its manifestation as the universal platform for all kinds of interchange the research on agents and agency has become intense. However, the philosophical, mathematical and foundation aspects of agent research need a lot of distance to travel. The relationships between networks and agents need to investigated, as are the stabilities of systems under the massively large number of interacting agents.
The agents may represent living humans or machines and entities of various kinds. There may be agents representing agents themselves. They negotiate with one another to maximize their rely-interest, based on their beliefs and aspirations. The networked world can therefore be viewed as a world of agents where every agent is in principle aiming to negotiate with every one else. Recognizing the intractability of theoretical formulations, we address a practical problem of load sharing among machines from these perspectives. Although negotiations manifest in many forms, the collaborative process is best suited in discussing the load sharing process.

When a number of computer systems are connected over the network, the quality of service the user obtains depends not only on the performance of the machine he is interacting, but also on those not directly involved with this user, as the resources are exchanged. Typically every conventional computing machine comes with a usual set of resources, such as processing power, memory, peripheral, data bases and software. It has been observed that most machines, in a university set up, for instance, are under utilized in terms of their resource consumption. Many research efforts have been reported to revitalize these idle resources to meet the demand occurring anywhere in the network. Moving and balancing the load across the interconnected machines may improve the response time, turn around time and the over all quality of service of the system.

The automated negotiation mechanisms between agents have by and large had their origin on the way people think and interact in course of their lives. The models of utility and models of psychology contribute a great deal in this process. We assume that the agents are more or less similarly endowed in terms of resources; the agents aspire to improve their performance measure in terms of response time or turn around

1.1 Motivation and Related Work

It is common observation that in most universities and organizations most computer systems are underutilized, while a few of them are over loaded. The nature of computing resources are undergoing changes, yet by and large for a while the existing computer systems designed for stand alone operations, are getting connected. These computing systems usually posses resources in terms of processor power, main memory, Input/output, communication and other resources in typical configurations. In this scenario moving jobs across computer systems, shifting and leveling loads, would clearly enhance the through put and advance other performance parameters such as turn around time and the quality of service.

The multi-agent community addresses the problems of this kind. The supply chain management in the context of electronic commerce involves multiple agents on behalf of various entities in the supply chain and a process of negotiation takes place between them for mutual advantage. A variety of agents are defined and their interactions are specified [4,7,10,13]. The postman problem [5] has interesting analogy, where a postmen with pre-assigned tasks to deliver letters, negotiate among themselves by exchange of letters, to enhance performance, the efficiency of the delivery system. Global scheduling accomplished from local decision and problem solving has been reported in case of transportation, cellular automata and other domains [21]. A contract net paradigm has been popular in many situations where multi-agent interactions take place.

Our work draws inspiration from all these, but the chosen domain of load redistribution among connected machines moves us a bit away from the path defined by these efforts. Our interest is on the resources management of general resources of a computing system including the processor power. A central agent arbitrating among machines ensures easy optimization. But there are disadvantages including slow response to dynamic situations and prone to single point failures. Therefore instead of an agent at centralized level arbitrating between machines, we envisage the empowerment of a machine as an agent with beliefs and aspirations, akin to distributed nature of the activity. Indeed we take into account the diversity of resources in machines as an important parameter constituting a basis for multi-agent negotiation mechanism.

2. Agent Modeling
The scenario of this studying is a simulation model of two connected network machines. These machines take the form of agents, who negotiate with each other to make deals to accomplish performance improvement between themselves. A machine is in the position of holding a set of jobs. These jobs are simulated using the assumptions of the workload model [2,8]. The workload model simulates the demands a typical job places on the processor, I/O device, communication device, and query to the database file in a variety of time sequences similar to jobs in real world systems. For each component, they reserve the amount of time indicated. The resources are queued under the existing machine operating system constraints

2.1 Model Definitions and Assumptions

a) Different jobs are assigned to the machines, A and B. These jobs are disjoint, DA (DB = (, where DA is the set of all jobs ai at machine A, ai (DA for i = 1,2,…,n. and DB is the set of all jobs bj at machine B, bj (DB for j = 1,2,…,m.

b) There is a set of resources rs (R for s = 1,2,…, t. Each job has a profile of estimated resource demand. Each resource rs has a finite capability for jobs in a time-shared system.

The negotiation paradigm is proposed with the following assumptions.

a) The machines are connected to the network, thus forming part of a distributed system.

b) Each machine has its own resources. There may be shared resources, but at this stage they form no part of the model.

c) Each machine has an initial load, consisting of a queue of jobs.

d) The jobs demand resources; the demands are random, and therefore not necessarily consistent with optimal individual performance or their collective performance.

e) Each machines behaves as an agent, with the intent to enhance its own individual performance.

f) The quantity of exchanged job(s) must not be greater than half of the existing jobs on the machine.
2 2Agents’ Aspirations and Utility Functions
Since there are no universally accepted formalisms for utility, we rely on experience and simulation [9,18,15]. The operating range is determined as shown in Figure 1, by taking into account the acceptable turnaround time in a given context. In the figure, it indicates a possible relationship between utility and effective load in qualitative manner. At loads less than point ‘a’, the machine agent aspires for more jobs, and at loads higher than ‘b’, he agent would aspires to reduce them. The segment marked a-b provides the ideal utility that a machine agent would aspire to enjoy and may be deemed the operating region.

Figure 1. Utility vs Load Distribution

To construct a utility function reflecting all the desirable parameters for the machine agent is possible, in consideration of capacity utilization and diversity of resource utilization in context.

1) Capacity utilization. A machine agent with zero load would wish to have a load. As the load increases, it has better performance in terms of resource utilization. However, with further increases in load, the turnaround and response time is expected to degrade. So the machine agent should seek jobs from other agents at low load conditions, and should attempt to unload in high load situations.

2) Diversity of resource utilization. A machine agent with processor-intensive jobs would seek to exchange jobs with another machine agent with input/output intensive jobs. A similar case exists for exchanges with other resources.

3) We may define what we term as effective load on machine and the utilization which takes into account the diversity factor as well.

In constructing the utility, we could explore mathematical functions that would fit as in Figure 1. It may be necessary to conduct simulation studies to get the appropriate parameters of load performance. However, this study focuses on the issues relating to negotiation in this context. In this work, we will study the situation of load is greater than ‘b’, b-c. The machine agent aspires to move to meet the ideal region, a-b.

2.3 Utility and Preference

In this research, a utility is constructed based rational heuristic of load balancing in a statistical model [15]. The reasonable load balancing will be considered by two parameters. The first parameter is the average resource consumption, denoted as
[image: image1.wmf]t

R

R

t

s

s

å

=

=

1

. The second parameter is the associated standard deviation of that resources consumed time or the diversity and denoted as
[image: image2.wmf](

)

)

1

(

1

2

-

-

=

å

=

t

R

R

S

t

s

s

R

. The rational utility is a function of these two parameters.

Let’s define
[image: image3.wmf]l

is a unified measure of weighted importance of these two parameters.

[image: image4.wmf]R

S

w

R

w

)

1

(

-

+

=

l

-----(1)

[image: image5.wmf]w

is the weight of importance,
[image: image6.wmf]1

0

£

£

w

.

The utility value of particular machine denoted as

[image: image7.wmf]t

t

m

m

U

)

(

1

)

(

l

=

------(2)

Where

[image: image8.wmf])

(

m

U

 is a utility of machine, m is A or B.
t
is the time in negotiation state, t = 0,1,…t. t+1.

Preference is a relative status in comparing the utilities at two states. A preference can be effected to the state which offer the higher utility. In this work, the preference is the difference of the state of machine utility and denoted as
[image: image9.wmf]j

i

m

P

,

)

(

.

The individual preference stage is denoted as:

[image: image10.wmf])

(

)

(

)

(

1

,

1

t

t

j

i

t

m

U

m

U

m

P

-

=

+

+

------(3)

Where

[image: image11.wmf]j

i

t

m

P

,

1

)

(

+

 is a preference of machine A or B in exchanging proposal of job i from machine A and job j from machine B at time t+1.

[image: image12.wmf])

(

t

m

U

is the utility of existing system at time t.

[image: image13.wmf])

(

1

+

t

m

U

 is the utility of the exchanging proposal of job i from machine A and job j from machine B at time t+1.

The machine agent will satisfy the greater
[image: image14.wmf])

(

m

U

because the lower value of the mean and the standard deviation in the resource’s consumption time, the better in the resource balance on the machine. This value will represent the improvement of balance within machine if the jobs are exchanged. The balance is improved if and only if
[image: image15.wmf]0

)

(

)

(

1

³

-

+

t

t

A

U

A

U

 for machine A and
[image: image16.wmf]0

)

(

)

(

1

³

-

+

t

t

B

U

B

U

 for machine B.

2.4 Negotiation Protocol

To consider all possible exchanges is an option. This would mean consideration (n x m) of possible exchange proposals and correspondent utility calculations. To avoid high computation costs in the negotiation process, a number of heuristic approaches are considered for selecting the offer made. We use contract net protocol (CNP) in this study. CNP is widely used in many application negotiation domains because of its flexibility and its low communication interaction protocol for task assignment [13,19].

The conditions for exchanging proposals are described below.

a) How do agent A and agent B select jobs and offers for exchange? The answer is that agents A and B would offer jobs which according to the following conditions. 1) Machine agents exchange jobs if they perceive benefit in doing so. 2) Machine agent A computes its utility. 3) Machine agent A offers the job, which causes the maximum overload, and its removal promises to increase diversity on its resource demand. 4) Agent A analyze that he can remove jobs if he accepts another job from the other machine. 5) Machine agent B follows corresponding step 2 and 3. 6) Machines agent B computes utility hypothetically accepting A’ offer. 7). If both machine agents A and B find a positive preference value, the exchange is effected or else rejected. 8) If more than one job consumes equal time in maximum overload of resources, the higher in total time is the candidate.

b) How does an agent (A or B) accept or reject the offer? The answer is that agent A and agent B consider the utility value before and after exchanging the proposal. The job(s) will be exchanged or the deal struck only if U(At+1) – U(At) ≥ 0 and U(Bt+1) – U(Bt) ≥ 0.

c) If the bid is not accepted, which job should A or B offer as a second choice? If the deal cannot be made, the alternative job is selected on the basis of the following conditions. 1) One persistence can be allowed if the proposal is rejected. 2) The previous persistence utility is comparable with the existing state and the selected job is maximum [U(mt+1), U(mt)]. 3) The job to be offered second will be selected on the basis of the reasoning of the cooperator. The agent considers two parameters that influence resource load balancing: total time and standard deviation. The properties of the agent in recognition of the past act will be used in listening to the critique from the cooperator. Corresponding jobs will be selected on the basis of critiques from the cooperator. If the time for jobs is too long, the agent will select the lesser time offered for a job. The standard deviation in the machine is not improved so the jobs with a lower standard deviation will be selected for offering.

3. Simulation Results

Table 1 is set of simulated jobs at machine A and B with ten assigned jobs with four kinds of resources, namely processor, data bases, communication and input/output (printer devices) [15]. For instance, the job a1 needs an estimated processor need of 5 units, I/O of 5 units, data base access of 3 units and communication of 2 units. These units are from some kind of normalization, such as x lines of printed out put may be equated to y seconds of processor time for a specific purpose. There can be more than one of way finding metrics for the resource usage. If we take them as time units, the turn around time, a possible measure of performance, is the time elapsed after a job is submitted. If only job a1 was assigned the turn around time would have been 15 units, which is the total usage of all the resources. If we suppose all the jobs arrived nearly at the same time, the turn around time for a10 would 148 units.

However, this does not happen in most systems, which have a time-sharing mechanism. While the machine may be printing for one job, it may processing another job and son. The turnaround time, must be far less due to interleaving mechanisms, the time sharing process supports.

	Jobs
	a1
	a2
	a3
	a4
	a5
	a6
	a7
	a8
	a9
	a10
	Total

	Resources
	
	
	
	
	
	
	
	
	
	
	Time unit
	Percent

	Processor
	5
	7
	6
	5
	4
	5
	6
	7
	8
	7
	60
	40.54

	I/O
	5
	5
	5
	2
	2
	2
	5
	5
	4
	4
	39
	26.35

	Database
	3
	3
	4
	2
	3
	2
	3
	2
	2
	2
	26
	17.57

	Communication
	2
	2
	2
	3
	4
	2
	2
	1
	2
	3
	23
	15.54

	Total
	15
	17
	17
	12
	13
	11
	16
	15
	16
	16
	148
	100.00

	Average
	3.75
	4.25
	4.25
	3.00
	3.25
	2.75
	4.00
	3.75
	4.00
	4.00
	37.00
	

	Std. between resource
	1.50
	2.22
	1.71
	1.41
	0.96
	1.50
	1.83
	2.75
	2.83
	2.16
	16.83
	

Table 1a, Represents the jobs at machine A

	Jobs
	b1
	b2
	b3
	b4
	b5
	b6
	b7
	b8
	b9
	b10
	Total

	Resources
	
	
	
	
	
	
	
	
	
	
	Time unit
	Percent

	Processor
	5
	5
	3
	5
	4
	4
	4
	3
	2
	4
	39
	27.86

	I/O
	5
	6
	5
	6
	7
	7
	5
	3
	4
	6
	54
	38.57

	Database
	2
	4
	3
	2
	2
	4
	3
	5
	2
	2
	29
	20.71

	Communication
	2
	1
	2
	2
	1
	2
	2
	2
	2
	2
	18
	12.86

	Total
	14
	16
	13
	15
	14
	17
	14
	13
	10
	14
	140
	100.00

	Average
	3.50
	4.00
	3.25
	3.75
	3.50
	4.25
	3.50
	3.25
	2.50
	3.50
	35.00
	

	Std. between resource
	1.73
	2.16
	1.26
	2.06
	2.65
	2.06
	1.29
	1.26
	1.00
	1.91
	15.30
	

Table 1b, Represents the jobs at machine B

Table 1, Illustration of two agents representing machines A and B with estimated demands on resources

We observe that machine A is processor bound taking the view that on the total resources demand, the highest load is on the processor. It is over 40%. On similar considerations machine B is input-output bound, Therefore just on this count, there is a case for exchange. A utility function could be formulated with characteristics close to Figure 4. However, if the machine is operating in the region far right of b in Figure 4, we can assume the machine is looking for exchange of jobs to improve performance. Machine agent A aspires to reduce its overload in CPU by sending the job a2,a9 and a10 to B. Machine agent B aspires to reduce its overload in I/O by sending job b2,b5 and b6 to A. The utility of this machine in the initiate state is 0.0371 for machine agent A and 0.0398 for machine agent B.

3.1 Load Balance

Load balance is an important parameter in performance of system. However, it is unlike the turnaround time which is what is reflected on the user perception. If we model individual machines as agents, as we are in this work, the load balance issue is at best incidental. In general, a good load balance is desirable. Between two machines a measure of load imbalance could be as follows:

Let
[image: image17.wmf]x

 be the imbalance between the two machines. The relative imbalance between the machines may be indicated by a suitable metric.

The imbalance between the two machines is 0 if they carry the same load and resource demand. If one of them carries no load, while the other carries some load, the imbalance is 1, indicating the highest load. For the other load distribution, the imbalance would be
[image: image18.wmf]1

0

£

£

x

. We propose:

[image: image19.wmf])

(

)

(

)

(

)

(

t

t

t

t

t

B

L

A

L

B

L

A

L

x

+

-

=

(4)

Where;
[image: image20.wmf])

(

t

A

L

 is the average load of machine A at time t, and
[image: image21.wmf])

(

t

B

L

is the average load of machine B at time t. If
[image: image22.wmf]1

+

³

t

t

x

x

, we can say that there is an improvement in the load balance between the two machines.

 The imbalance of machine A and B at time initial state is
[image: image23.wmf]t

x

 = ((148-140)/(148+140) (= 0.028.

3.2 Exchanging Result

The three pairs of jobs exchanged between machine A and machine B are (a9,b6), (a2,b5),and (a10,b2). The utility and new set of jobs, of each machine is described in Table2 and Table3.

	Machine
	Utility before exchanging job
	Utility after exchanging job
	Preference

	A
	0.0371
	0.0392
	0.0021

	B
	0.0397
	0.0402
	0.0005

Table 2: Utility and Preference of Machine A and B
This contributes in the same manner, the imbalance between two machines being reduced. The imbalance after the negotiation and the jobs are exchanged is ((146-142)/(146+142) (= 0.014.

The diversity of consumed resources is lower than the initial state. The percentage in utilization is also better.

	Jobs
	a1
	b5
	a3
	a4
	a5
	a6
	a7
	a8
	b6
	b2
	Total

	Resources
	
	
	
	
	
	
	
	
	
	
	Time unit
	Percent

	Processor
	5
	4
	6
	5
	4
	5
	6
	7
	4
	5
	51
	34.93

	I/O
	5
	7
	5
	2
	2
	2
	5
	5
	7
	6
	46
	31.51

	Database
	3
	2
	4
	2
	3
	2
	3
	2
	4
	4
	29
	19.86

	Communication
	2
	1
	2
	3
	4
	2
	2
	1
	2
	1
	20
	13.70

	Total
	15
	14
	17
	12
	13
	11
	16
	15
	17
	16
	146
	100.00

	Average
	3.75
	3.5
	4.25
	3.00
	3.25
	2.75
	4.00
	3.75
	4.25
	4.00
	36.5
	

	Standard deviation between resource
	1.50
	2.65
	1.71
	1.41
	0.96
	1.50
	1.83
	2.75
	2.06
	2.16
	14.48
	

Table 3a, The jobs at machine A after exchange

	Jobs
	b1
	a10
	b3
	b4
	a2
	a9
	b7
	b8
	b9
	b10
	Total

	Resources
	
	
	
	
	
	
	
	
	
	
	Time unit
	Percent

	Processor
	5
	7
	3
	5
	7
	8
	4
	3
	2
	4
	48
	33.80

	I/O
	5
	4
	5
	6
	5
	4
	5
	3
	4
	6
	47
	33.10

	Database
	2
	2
	3
	2
	3
	2
	3
	5
	2
	2
	26
	18.31

	Communication
	2
	3
	2
	2
	2
	2
	2
	2
	2
	2
	21
	14.79

	Total
	14
	16
	13
	15
	17
	16
	14
	13
	10
	14
	142
	100.00

	Average
	3.50
	4.00
	3.25
	3.75
	4.25
	4.00
	3.50
	3.25
	2.50
	3.50
	35.5
	

	Standard deviation between resource
	1.73
	2.16
	1.26
	2.06
	2.22
	2.83
	1.29
	1.26
	1.00
	1.91
	14.01
	

Table 3b, The jobs at machine B after exchange

3.3 Performance Evaluation Result

Data in Table 4 are the results of average turnaround time for the set of jobs completely executed in time sharing system after exchange of jobs. The initiation of turnaround time of the original jobs at machine A requires 42 units of time (milliseconds) and 38 units of time at machine B. After each job was exchanged, a new set of jobs was completely run again; these consumption times are shown in the Table 4 and Figure 2. Results at each machine contribute to an improved turnaround time. The sequence pair for exchanging (a9, b6), then is (a2,b5) and lastly (a10,b2).

	Number of jobs exchanged
	Machine A Average turnaround time (unit)
	Machine B Average turnaround time (unit)

	0*
	42
	38

	1 (a9, b6)
	39
	35

	2 (a2,b5)
	36
	33

	3 (a10,b2)
	34
	32

0* is performance before exchange of jobs

Table 4, Turnaround time for completing 10 jobs

[image: image24.wmf]Average Turnaround time Comparison

42

39

36

34

38

35

33

32

20

25

30

35

40

45

0

1

2

3

Number of exchanging jobs

Time

(

unit

)

Machine A

Machine B

Figure 2, Comparison of average turnaround time

4. Conclusions

In this paper we have outlined a mode of negotiation between machines to improve their utility. We have chosen what could be called a greedy approach. In this approach each machine agent behaves like an individual whose primary concern is to improve its status. A utility measure could help. We assume that machines operate with significant initial load on the right part of Figure 1. We could easily modify to take into account the whole range of Figure 1. However, the examples discussed in this paper the load imbalance decreased with exchange. But it is not certain that individual improvements of performance as seen by turn around time would bring about a balance on the over all system.

The concept of this model may be extended to multiple machines that act as agents exchanging resources and tasks, such as the World Wide Web which is a very large number of machines and resources. The agents connected may be expected to effect a prudent exchange of jobs in order to enhance individual performance and overall system performance. However, as the number of machines in the network increases, the complexity of protocol would tend to be exponential. Taking a real life situation, we could use a “small world” concept. The concept is to form a cluster of small groups of nodes within the network for interaction. However, we have not pursued this at the time of research.

References:

[1]
A. Chavez, A. Moukas and P. Maes, Challenger: A Multi-agents System for Distributed Resource Allocation, in Proc. The First International Conference on Autonomous Agents (Agents'97). ACM Press, New York 1997.

URL: HTTP://citeseer.nj.nec.com/8171.html
[2]
D.A. Menascw and V. A.F, Almeida Capacity Planning for Web Performance, Prentice Hall: New Jersey, 1998.

[3]
FIPA, Foundation for Intelligent Physical Agents, Geneva, Switzerland. URL: HTTP://www.fipa.org.

[4]
G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press Massachusetts Institute of Technology, MA, 1999.

[5]
G. Zlotkin and J. R. Rosenschien, Negotiation and Task Sharing Among Autonomous Agents in Cooperative Domains, JCAI-89, 1989, pp. 912-917.

[6]
G. Zlotkin and J. R. Rosenschien, A Domain Theory for Task Oriented Negotiation, in Proc. The Thirteenth International Joint Conference on Artificial Intelligence, volume 1, San Mateo, California, 1993.

[7]
H.S., Nwana, L. Lee, and N.R. Jenning, Coordination in Software Agent System, BT Technol Journal, Vol. 14, No. 4, October, 1996, pp. 79-89.

[8]
J. Cady, and B. Howarth, Computer Systems Performance Management and Capacity Planning, Prentice Hall, Australia, 1990.

[9]
J. Neter, W. Wasserman and G.A Whitmore, Applied Statistics, Fourth edition, A Division of Simon & Schuster, MA, 1993.

[10]
J.P. Muller, A Cooperative Model for Autonomous Agents, in Proc. Intelligent Agents III, Agent Theories, Architectures and Languages, Budapest, Hungary, August, 1996, pp. 245-260.

[11]
K. Fisher, J.P. Muller, M. Piscal and D. Schier, A Model for Cooperative Transportation Scheduling, in Proc. The First International Conference on Multiagent System, AAAI press/MIT press, CA,1995, pp. 109-119.

[12] K.H. Rosen, ‘Discrete Mathematic and its Applications’. Fifth edition. McGraw Hill. USA.,2003.

[13]
M. Wooldridge and N.R. Jenning, Intelligent Agents: Theory and Practice, Knowledge Engineering Review vol.10, 1995, pp. 115-152.

[14]
N.J. Jenning, Coordination Techniques for Distributed Artificial Intelligence, In O’Hare, G.M.P., N.R. Jenning (ed.), Foundation of Distributed Artificial Intelligence. John Weiley & Sons, Inc., New York, 1996.

[15]
P. Suesaowaluk, and R. Sadananda, Modeling Resource Management by Agents Interaction. Proceedings of The Sixth International Conference on Information Integration and Web Based Applications & Services, Jakarta, Indonesia, September, 2004.

[16]
R. Finkle, The Process Mechanism of Charlotte, Newsletter of the IEEE Computer Society Technical Committee on Operating Systems, Winter, 1989.

[17]
R. G Smith and R.Davis, The Contract Net Protocol: High Level Communication and Control in a Distributed Problem Solver, IEEE Transactions on Computers, Vol. C-29, No. 12, December,1980, pp.1104-1113.

[18]
S. J. Russel and P. Norvig, Artificial Intelligence A Modern Approach, Prentice Hall: New Jersey, 1995.

[19]
T. Knabe, M. Schillo, and K. Fisher, Improvement to the FIPA contract net protocol for performance increase and cascading application, In International workshop for Multi-Agent Interoperability at the German Conference on AI, 2002.

[20]
W. Stalling, Operating Systems internal Design and Principles, Fourth edition, Pearson Education Inc., India, 2001.

[21]
Wolfram, S. (2001): A New Kind of Science, Wolfram Media, Inc.

a b c Load

Under Utilize

ideal

Over load

Utility

_1160621696.unknown

_1161853712.unknown

_1161854046.unknown

_1161855880.unknown

_1161857524.unknown

_1161854133.unknown

_1161854045.unknown

_1161850576.unknown

_1161853486.unknown

_1160623952.unknown

_1160623959.unknown

_1161849330.xls
Chart1

		0		0

		1		1

		2		2

		3		3

Machine A

Machine B

Number of exchanging jobs

Time (unit)

Average Turnaround time Comparison

42

38

39

35

36

33

34

32

Sheet1

		

				Machine A		Machine B

		0		42		38

		1		39		35

		2		36		33

		3		34		32

Sheet1

		0		0

		0		0

		0		0

		0		0

Machine A

Machine B

Number of exchanging jobs

Time (unit)

Average Turnaround time Comparison

0

0

0

0

0

0

0

0

_1160623942.unknown

_1150638098.unknown

_1151417095.unknown

_1151417136.unknown

_1151418589.unknown

_1151416917.unknown

_1151416928.unknown

_1151417027.unknown

_1151155235.unknown

_1150637850.unknown

_1150637985.unknown

_1144174434.unknown

