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Abstract: - In this paper we propose some fuzzy extensions for the representation and the reasoning process which allow the treatment of multimedia object representation, retrieval and detection. Classical knowledge based systems are insufficient for describing multimedia situations since retrieval and detection are not usually situation of true or false. For this reason, we propose a fuzzy extension in ALC Description Logics based on the fuzzy interpretation and fuzzy triangular norms. 
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1   Introduction

The representation and management of uncertainty, imprecision and vague knowledge that exists in real life applications, has received a considerable attention in the Artificial Intelligence (AI) community in an attempt to extend existing knowledge representation systems to deal with the imperfect nature of real world information. Furthermore, a lot of work has been carried out for the development of reasoning engines that can interpret imprecise knowledge [19].

For the representation of the general knowledge, we used Description Logics (DLs). In the last decade a substantial amount of work has been carried out in the context of (DLs) [20]. A main point is that DLs are considered as to be attractive in knowledge based systems as they are good compromise between power and computational complexity. 

Experience in using DLs in applications has shown that in many cases we would like to extend the representational and reasoning capabilities of them. In particular, the use of DLs in the context of multimedia , point out the necessity of extending DLs with capabilities which allow the treatment of the inherent imprecision in multimedia object representation, retrieval and detection [19]. In fact, classical DLs are insufficient for describing multimedia situations since retrieval matching and detection are not usually situation of true or false.

The proposed extensions have been tested in a facial expression recognition study. We have constructed fuzzy propositional rules using the Facial Expression Parameters (FAPs) defined in the MPEG-4 standard [18]. The continuity of emotion space, the uncertainty involved in the feature estimation process and the required ability of the system to use prior knowledge, while being capable of adapting its behaviour to its users’ characteristics, make appropriate the use of the proposed fuzzy extensions and inference engine. In addition, the fuzzy nature of the system is appropriate for multimedia information retrieval since it allows the treatment of inherent imprecision in multimedia objects representation and retrieval. Classical multimedia systems are insufficient for describing multimedia retrieval, matching and detecting situation. 

The structure of the paper is as follows. In the first section is depicted the structure of the knowledge base. The basic concept of DLs and PLs along with their respective fuzzy extension is illustrated. In the second section, is presented the inference engine of the propositional rules and its adaptation algorithm. In the third section, the proposed fuzzy knowledge based system is demonstrated through a facial expression recognition study.
2   Fuzzy Description Logics
Many researchers in the past have been involved with the use of fuzzy set theory to extend the DLs in order to deal with imprecision [19, 20, 21].

The specific DL we will extend and propose some fuzzy extension is ALC, a significant representative of DLs. Firstly we will introduce the basic concepts of ALC. Secondly we will present our fuzzy extension of the ALC. In this paper, we will generalize work done by other researchers [19] in the field of fuzzy DLs. 

Classical  DLs

Concepts are expressions that collect the properties described by means of roles, of a set of individuals. From FOL point of view, concepts can be seen as unary predicates, whereas roles are interpreted as binary predicates.

A concept denoted by C or D, of the language ALC is build out of primitives concepts according to the following syntax rules:
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Dls have a clean model-theoretic semantics, based on the notion of interpretation. An interpretation I is a pair 
[image: image2.wmf])

(

,

I

I

I

×

D

=

 consisting of a non empty set 
[image: image3.wmf]I

D

 and an interpretation function 
[image: image4.wmf]I

×

 mapping different individuals into different elements of
[image: image5.wmf]I

D

, primitive concepts into subsets of 
[image: image6.wmf]I

D

 and primitive roles into subsets of
[image: image7.wmf]I

I

D

´

D

. The interpretation of complex concepts is defined as:


[image: image8.wmf]0

()

()

()\

(.){|.(,)}

(.){|.(,)}.

II

I

III

III

III

IIII

III

CDCD

CDCD

CC

RCababRbC

RCababR

=D

^=

=

=

Ø=D

"=ÎD"Î®Î

$=ÎD$Î

I

U

ó

ò

•


A knowledge base in DLs comprises two components, the TBox and the ABox. The TBox introduces the terminology of an application domain, while the ABox contains assertions about named individuals in terms of this vocabulary. 

An assertion a is an expression of type a:C, which means that a is an instance of C, or an expression of type (a,b):R, which mean that a, b are instances of R. An interpretation I satisfies a:C iff 
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In most general case, terminological axioms have the form
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where C, D are concepts and R, S are roles. Axioms of the first kind are called inclusions, while of the second kind are called equalities. An interpretation I satisfies an inclusion 
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. If T is a set of axioms, then I satisfies T iff I satisfies each element of T. If I satisfies an axiom, then we say that it is a model of this axiom. Two axioms or two sets of axioms are equivalent if they have the same models.

Fuzzy extension

The concepts in DLs are interpreted as crisp sets, i.e. an individual either belongs to the set or not. However, many real-life concepts are vague in the sense that they do not have precisely defined membership criteria. The main idea underlying the fuzzy extensions of DLs proposed in [20, 21] is to leave the syntax as it is, but to use fuzzy logic for defining the semantics. Our fuzzy extension generalizes the work done in [19]. Straccia’s work is based on Zadeh’s work on fuzzy sets. A fuzzy set S with respect to a universe U is characterized by a membership function 
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=0.8 means that u is likely to be an element of S. the membership function have to satisfy three restrictions. The minimum, the maximum and the complement operators are called the standard fuzzy operations that perform precisely as the corresponding operations for classical sets when the range of membership grades is restricted to the set {0,1}. That is, the standard fuzzy operations are generalizations of the corresponding classical set operations. However, for each of the three operators, there exist a broad class of functions whose members qualify as generalisations of the classical operation as well. Straccia have proposed the standard fuzzy operators. In our extension triangular norms and conorms operators are considered as fuzzy intersections and fuzzy unions respectively. Also the general fuzzy complement is considered instead of the standard fuzzy complement (1-a). Each of the classes of the operators is characterised by properly justified axioms.  A t-norm (triangular norm) is a function 
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moreover, it is called Archimedean iff

 t is a continuous function
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An s-norm is a function 
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Having defined the fuzzy set intersection and union, we can generalise the three main set restrictions that can be applied in a membership function. This generalisation will help us later in this section to define in a better way the fuzzy existential and universal quantification operators. t-norms and s-norms are the functions that qualify as fuzzy intersections and fuzzy unions respectively. 
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where t is a t-norm, 
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is an s-norm and c is a fuzzy complement. The choice of the min and max operators as the set of intersection and union respectively as unique possible choice has been made by Bellman and Giertz [24]. However, this is contradictory to the Zadeh’s work on fuzzy union and intersection operators [25].

Three example of t-norms are (each defined for all
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The corresponding dual s-norms are (each defined for all 
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An example of fuzzy complement is defined by (
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where 
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 and is known as the Yager complement. When w=1, this function becomes the classical fuzzy complement of c (a) = 1 – a.

According to Straccia’s fuzzy DLs and our generalization using t-norms and s-norms a concept rather than interpreted as a classical set is interpreted as fuzzy set and thus concepts becomes imprecise. 

The fuzzy DLs have a clean model-theoretic semantics based on the notion of the fuzzy interpretation. A fuzzy interpretation is defined using the classical definition. Is a pair 
[image: image41.wmf](,)

II

I

=D×

 consisting of a non empty set 
[image: image42.wmf]I

D

 and an interpretation mapping function 
[image: image43.wmf]I

×

 . Thus, an interpretation now assigns fuzzy sets to concepts and roles as:


[image: image44.wmf]:[0,1]

:[0,1]

II

III

fconceptA

froleR

D®

D´D®


The interpretation of the Boolean operators and the quantifiers must then be extended from {0,1} to the interval [0,1]. Therefore if A is a concept then 
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 will be interpreted as the membership degree function of the fuzzy concept A. for example if 
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Note that, 
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In [19,20,21], are defined the usual interpretation of conjuction as minimum, disjunction as maximum, negation as (1-a), universal quantifier as infimum and existential quantifier as supremum. In this paper, we consider the maximum as s-norm, the minimum as t-norm and the (1-a) as the fuzzy complement. Fuzzy norms can change the behaviour of the knowledge base. It is obvious that the semantics of a sentence that uses the minimum t-norm are different from one that uses the product t-norm. 

Two concepts C and D are said to be equivalent when 
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for all interpretations I. in classical sets, the operation of intersection and union are dual with respect to the complement. As for the classical sets, dual relationships between concepts hold: e.g. 
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However, only some combinations of t-norms, t-conorms, and fuzzy complements can satisfy the duality. A t-norm t and a t-conorm
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where these equations describe the De Morgal law for fuzzy sets[3].

The fuzzy DLs knowledge base, like the classical DLs, consists of fuzzy assertions and fuzzy terminologies. A fuzzy assertion 
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3   Use Case
In order to demonstrate the applicability of the proposed extensions, we illustrate an experimental study dealing with facial expression recognition. The basic motivation for examining this particular application stems from several studies for facial expression recognition that are based on image/video features. In this experimental study we employ MPEG-4, through the use of the Facial Animation Parameters (FAPs) that uses intermediate states to characterize facial expressions [18]. Intermediate states refer to the fact that no low-level image/video features (pixel values, motion vectors, colour histograms) are used directly for modelling the expressions.  FAPs in real images and video sequences are defined through the movement of some points that lie in the facial area and are able to be automatically detected. Quantitative description of FAPs based on particular Facial Points (FPs), which correspond to protuberant facial points’ movement, provides the means of bridging the gap between image analysis and expression recognition. In this paper we are not particularly interested in the extraction of image/video features and the calculation of the FAPs. We employ FAPs to construct rules and knowledge that formally represent the facial expressions recognition domain. The output of the algorithm [18] that calculates the FAPs values of an image is stored in an XML file. The list of FAPs that are used, as well as the list of the possible facial expressions to be recognized are depicted in Table 1. The fuzzy nature of the facial expression recognition task in combination with the use of structured knowledge that can be implemented in a machine processable way, make suitable the use of the proposed knowledge based system.  

Table 1. The set of FAPs and Expressions

	Nr
	FAP name
	D

	F1
	open_jaw
	d2

	F2
	lower_top_midlip
	d1

	F3
	raise_bottom_midlip
	d3

	F4
	widening_mouth
	d4

	F5
	close_left_eye
	d6

	F6
	close_right_eye
	d5

	F7
	raise_left_inner_eyebrow
	d8

	F8
	raise_right_inner_eyebrow
	d7

	F9
	raise_left_medium_eyebrow
	d10

	F10
	raise_right_medium_eyebrow
	d9

	F11
	raise_left_outer_eyebrow
	d11

	F12
	raise_right_outer_eyebrow
	d13

	F13
	squeeze_left_eyebrow
	d12

	F14
	squeeze_right_eyebrow
	d15

	F15
	wrinkles_between_eyebrows
	d23

	F16
	raise_left_outer_cornerlip
	d22

	F17
	raise_right_outer_cornerlip
	d11


	Nr
	Expression name
	Nr
	Expression name

	E1
	Joy
	E4
	Fear

	E2
	Sadness
	E5
	Disgust

	E3
	Anger
	E6
	Surprise
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Fig. 1. The distances that are defining FAPs and FPs
For the implementation of the general knowledge we have used a machine processable language. Ontology Web Language (OWL) implements the described DLs operators. More specifically, OWL DL [26] has been used, for the construction of the general knowledge ontology. For editing the ontology we have used Construct ontology editor [26] and the reasoning is performed using the Cerebra inference engine [26]. 

In order to create the knowledge base we must first specify the domain of interest. In this experimental study we are dealing with the domain of facial expression recognition. Therefore, an ontology has been produced for representing knowledge concerning MPEG-4 facial information and expressions.

The general knowledge has been formally defined based on the described DLs operators. A small set of the formal definitions of the knowledge can be seen below.
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In Fig. 6 below can be seen the graphical representation of a sample of the ontology constructed for the general knowledge. The OWL DL code of the presented sample is presented below. 
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Fig. 2. A sample of the Facial Expression ontology

4   Conclusion

In this paper, we have presented a fuzzy extension in DLs based on fuzzy sets and triangular norm and a fuzzy extension of PLs based on compositional rule of inference for constructing fuzzy inference rules of the form If A and B THEN C. The proposed fuzzy extensions are suitable for multimedia applications since multimedia information incorporates uncertainty and vague knowledge. In particular, the use of DLs and inference rules in the context of multimedia, point out the necessity of extending them with fuzzy capabilities which allow the treatment of the inherent imprecision in multimedia object representation, retrieval, matching and detection

The proposed extensions have been tested in a facial expression recognition study using fuzzy propositional rules created through the use of the Facial Expression Parameters (FAPs) defined in the MPEG-4 standard. The continuity of emotion space, the uncertainty involved in the feature estimation process and the required ability of the system to use prior knowledge, while being capable of adapting its behaviour to its users’ characteristics, make appropriate the use of the proposed fuzzy extensions and inference engine. 

Finally, our plans are to extend the existed tableaux algorithm to support the proposed fuzzy extensions of DLs. In [19] and [20] are defined complete algorithms for solving a set of the fuzzy extensions. Our premise is to extent the fuzzy tableaux algorithm to support the whole set of t-norms and s-norm operators. 
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