TCN (Train Communication Network) gateway for simulation

JAIME JIMENEZ, J. L. MARTIN, JAGOBA ARIAS, UNAI BIDARTE, ARMANDO ASTARLOA
Departamento de Electronica y Telecomunicaciones
Universidad del Pais Vasco
Alda. Urquijo s/n, 48.013 Bilbao
ESPANA

jtpjivej@bi.ehu.es http://det.bi.ehu.es/~apert/ APERT engl.htm

Abstract: - In this paper a behavioral model of the gateway for the Train Communication Network (TCN) is
presented. It has been used in a specific verification tool for TCN devices based on a commercial VHDL
simulator. By means of bit level exhaustive simulation in this tool, electronic designs in VHDL language have
been validated before prototypes are produced. In this way, a virtual communication network is composed of
various TCN device models which interchange pieces of information. These data and the network management
parameters have been written in the configuration files of every model through the user interface. Such virtual
nodes generate VHDL signals that simulate real traffic of Master and Slave Frames. However, the whole
description has not been edited in plain VHDL. Upper level functions have been written in C++; these
communicate with the bus controller in VHDL by means of the FLI, a special interface for this purpose. In the
case of the gateway, the model consists of some blocks which are common to more simple devices, and a
specific one: the TCN gateway function. In addition, an application module must have been inserted in order to
produce the message traffic.

Key-Words: - Testbench, Train Communication Network, gateway, virtual network, simulation tool, validation
process.

1 Introduction

In electronic design, verification is one of the most
important tasks during the system project [1].
Validating a design involves guaranteeing that the
product works as it was expected to [2]. Absolute
validation is not viable until physical prototype is
produced and thoroughly tested in real world
operation. Nevertheless, this practice carries
significant drawbacks: errors and bugs cannot be
found until prototype is generated and, subsequently,
their resolution means a new complete design and
prototype process. So time to market gets longer and
project costs rise in opposition to management’s basic
rules.

Practical validation must look for more efficient
methods. Hence, design flow is divided in
consecutive steps in order to produce a more and
more detailed description, or model, of the system.
Then a more flexible validation, but efficient indeed,
is reached by verifying whether the subsequent
models behave like the previous ones. This process
involves specifying carefully an accurate start point
which reflects exactly the behavior of the final target.
This first description is usually the requirements
document, where the designer tries to collect all
user’s needs.

Therefore, some different models describing the
same definitive system are created and verified before
the prototype is produced (Fig. 1). The first of them is
usually the behavioural description, second the
register transfer level (RTL) model and third the gate
netlist (synthesis) [2]. It must be verified whether
each of them matches initial specifications, and a
description cannot be generated until previous one
has been approved.

SPECIFICATIONS
_’

VERIFICATION
simulation refinement
RTL
A model 4—
Gate
b netlist 4—

4

physical design

Fig. 1. Design flow for an electronic system.

Such a design flow requires specific testbenches in
order to validate each model. These wvalidation
environments simulate the stimuli which the final
circuit will find in real operations. Editing these
testbenches is a complex task, specially when dealing
with devices in communication networks [1]. In this
case, although there are often few inputs and outputs,
signal values can change randomly and fast, so
possible stimuli may be almost infinite. Of course,
the designer is not interested in all the cases but in a
limited set of them. However, deciding which inputs
will be forced, generating and controlling them,
simulating the responses and analyzing results are as
tedious as crucial tasks.

In this paper we report a specific solution to such a
problem: a testbench to verify digital communication
circuits for an industrial data network, used in trains
[3]. The simulation environment requires at least two
buses, with one bus administrator and one slave node
each. It will let the designer validate a device
described in VHDL language. If this model code to
be tested can be synthesized by a compiler, the result
is the verification of our FPGA design before
prototype is produced [4].

2 The Train Communication Network
(TCN)

An on-board train communications system had been
widely demanded for modern railways, so device
interoperability, distributed control architectures and
integration with other external networks are made
easier by interconnecting all the electronic
subsystems [5-6]. The definitive version of such a
standard was approved as Train Communication
Network (TCN) [7]. The general architecture of TCN
includes two bus types (Fig. 2):

MVB (Multifunction Vehicle Bus), which is
used for attaching the electronic equipment inside a
train vehicle.

WTB (Wired Train Bus), which is used for
interconnecting the different vehicles of a train.

Train
bus

Bus
master

Air condition ‘ Passenger info bus
I I I
| Device‘ | Device ‘ [Device |
o 1% L T T (N
actors
OO00 BO kO
rakes
iy) ())

RIS —
Train-vehicle
gateway Vehicle

Fig. 2. Train Bus and Vehicle Bus.

Both bus types have Master-Slave architecture to
control access to the network. So each vehicle bus

and train bus has one Master node and several Slave
ones. This type of architecture ensures time-critical
data to be transferred in real time, which is an
important requirement in traction control.

In a Master-Slave architecture, the Master is a
device which spontaneously sends information, a
Master Frame, to a number of Slave devices. It gives
a Slave the permission to transmit one Slave Frame
before a certain time-out. The Slave is a device that
receives information from the bus or sends
information through it in response to a request from
the Master [7-8].

In MVB different classes of devices can be used in
order to carry out various functions and services both
for the vehicle and for the bus itself. Table 1 shows
all the MVB device classes and their capabilities. For
instance, class 1 devices play the Slave role, receive
Master and Slave Frames and, when polled, send a
Slave Frame. Such a device is able to transmit its
device status as well as Process Data when polled and
to receive Process Data from other devices [9].

TABLE 1
MVB DEVICE CLASSES AND CORRESPONDING
CAPABILITIES
) o) =
= = <
g 8 £ .
<] < g = g > <
E -] o0 s = z
=1 — S =
] a = e = Q
~— a | = b= E ~
wl | @ = = = i
S 2 g 9~ < O|
2 Q 2 - P I Z
> e kA Q Q)
Q = @ @ = Q
A & 2 P = /A =
Class 0
Class 1 . °
Class 2 ° ° ° °
Class 3 . ° ° . °
Class 4 o ° ° ° o °
Class 5 o ° ° ° o o °

e: Compulsory cap. ©o: Optional cap.

2.1 The TCN Gateway
The fig. 3 shows the functional architecture of the
TCN gateway. It must route both, the Process Data
traffic and the Message Data one, from a certain
MVB bus to a WTB node, which will forward it to
another MVB bus. The Process Data management is
simple: the gateway identifies which variables must
be transferred from one bus to the other, by means of
an exportation list.

For the purpose of interchanging the Message
Data, a specific protocol must be followed in the
network, transport and session layers. In this way,

different types of messages have been established;
first of all, information packets: data (DT),
acknowledgement (AK) and negative
acknowledgement (NK). The other ones are: connect
request (CR), connect confirm (CC), disconnect
request (DR) and disconnect confirm (DC) for the
point to point communication; and broadcast connect
(BC), broadcast data (BD), broadcast repeat (BR) and
broadcast stop (BS) for the broadcast communication.

Application Application
module layer
A A
Message data MVB ﬁ F__ Message _data WTB
module ¢ > module
Gateway
module
Process_data MVB [€— | Process_data WTB
module f t module
Device_status MVB . . Device_status WTB
module ngh link module
layer

A
| MVB interface (C+FLI) M function_init M ‘WTB interface (C+FLI) |

VHDL
MVB bus controller

VHDL

Low link WTB bus controller

layer

Fig. 3. Functional block diagram of the gateway.

USER INTERFACE
Create the network Visualization
Produce data traffic
Configure the nodesl

VHDL

Virtual
network

|1,

model for
synthesis

 k

Obtain network operation

Integrated
new design

Visualization

[

Fig. 4. Description of the simulation tool.

Fig. 3 also shows that the bus controllers have
been described in VHDL and the higher level

functions in C. Some special procedures, the FLI [10]
routines, are in charge of interfacing both parts.

3 The Testbench: a Virtual Network

As fig. 4 indicates, the proposed testbench includes a
user interface in order to adapt the verification
environment to MVB specific requirements and a
VHDL interface for integrating the design under test,
as well as facilities to add this one to the virtual
network [11].

In fig. 5, the languages used to describe the
gateway can be associated with functional parts. The
C module not only interacts with the bus controller in
VHDL but also it reads the input configuration file
and writes the output report one.

Gateway
Configura- ! C ! Reports
tion file
Bus controller Bus controller
(VHDL) (VHDL)
i
MVB bus A
MVB bus B

Fig. 5. Languages used to describe the gateway and
interactions with input-output files.

3.1 The Configuration File

A piece of a configuration text file can be seen in fig.
6, showing subscribed addresses for Process Data.
Here, each line contains one logical address, or port,
a flag to say whether it is a source or sink, its F code,
which specifies the data length, and finally all data
bits. In the first line, the address belongs to the device
itself and data are the Device Status. Of course, our
tool is in charge of generating such a file from the
user interface in a friendly way. Later, the model
itself will modify the data bits upon received Slave
Frames.

3.2 The Gateway Model

So far, this verification tool has been used to test only
MVB devices. Therefore, the gateway model has
been more simple than in the most general case, as
fig. 7 shows. No WTB module or interface has been
included, since they are not necessary at all for that
purpose. However, interconnecting two MVB buses
is crucial in order to validate the Message Data
management.

Device address Device status

000000001111|0 0000|1010101010100101
000000001111 0 0000 1010101010100101
000000101000 1 0000 1111111111111111
000000101001 0 0001 01000000000000000000000000000001
000000001111 0 0000 1010101010100101
000000001111 0 0000 1010101010100101
000000001111 0 0000 &9}0101010100101

v J
Logical addresses F code Data
or ports Source / sink
Fig. 6. An example of the configuration file.
Traffic TCN_gateway Traffic
Store function Store
MVB B I Process_Data 7y MVB A
? traffic e |
Process_Data Process_Data
function function
| VHDL Application VHDL L]
Bus Controller 4—l Bus Controller
Message_Data Message_Data
function function
TCN_gateway
e function e
Message 4 Message Data [Message
queues Y traffic N queues

Fig. 7. The gateway used to verify MVB devices.

3.3 The Bus Controller

The bus controller in VHDL is represented in fig 8. It
is composed of three entities and, on the right hand,
in addition to the 3 clock input signals, the interface
signals with the C block can be seen. These six signal
are read by the FLI subroutines.

clk
\ 4
TXE X P datos_tx
Transmisor [«
w long_datos_tx
Interfaz TxS tx_com
bus_mvb >
datos_rx
RxS R . g
eceptor »
A P lon_ngltos_rx
P rx_com
f clk2
clk err

Fig. 8. The bus controller in VHDL.

3.4 The Test Scenario
The specific test scenario is shown in fig. 9: two
MVB buses are interconnected by a gateway, the

class 5 device. Each bus must have a Master Frame
generator (Gen _MF), a simplified class 4 device,
and, at least, one class 2 device. Sometimes, this last
one may be just a class 1 device, since the Message
Data capability is not needed to monitor Process Data
traffic.

Class 2 Gen_MF2
b b2
I I LR Class_5
| | bus_mvb
Class 2 Gen_MF

Fig. 9. The basic test scenario.

3.5 The Block Diagram of the Class 5 Device
The functional architecture of the class 5 device, the
gateway, is represented in the block diagram of the
fig. 10. If the “Gateway module” is deleted, it results
in a class 2 device, and if, in addition, the Message
Data module is also suppressed, it turns into a class 1
device.

Application .
module Application
7y layer
Process_data Device_status Message_data Gateway
module module module module
4 High link layer
A 4
| C+FLI function_init module | Low link

layer

VHDL VHDL
Bus controller Bus controller

Fig. 10. The block diagram of the gateway.

3.6 The Master Frame Generator

In the case of the class 4 device, the Master Frame
generator, the behavioral architecture is quite
different, as fig. 11 shows. There are two main
management blocks synchronized by a timing control
module. The first one generates Master Frames for
Process Data and the second one dispatches events.
As a matter of fact, this last procedure is the way to
send Message Data.

C+FLI
gen_MF module Timing
control
Process data Event
traffic 4—'—} management
management
Bus controller
L» interface d
C+FLI
A

VHDL
Bus controller

Fig. 11. The block diagram of the Master Frame
generator.

4 Simulation Results of the Gateway

In order to validate the model of the gateway, a
specific set of test cases has been simulated with
some input vectors. The first test case describes the
Process Data traffic between two MVB buses (fig.
12). The results have been successful and they have
been represented graphically in fig. 13. The gateway
has forwarded the data in sink ports of the Traffic
Store in the first MVB bus to the proper source ports
of the second traffic memory, following the
instructions in the exportation list. The latter has been
specified by means of the gateway configuration file.

Gateway
Traffic Traffic
Class 1 Store 1 Store 2
Traffic ' |
Store 3 Interface 1 Interface 2
I |
MVB 1 MVB 2

Fig. 12. The test scenario for Process Data traffic.

First, the gateway receives a Process Data Slave
Frame for one of its sink ports, as any other Slave
device in the MVB bus 1.

Second, it writes the data in the proper address and
looks for a destination port in the memory 2, reading
the exportation list. And third, a piece of received
data (one of the variables in that port) is written in the
Traffic Store 2.

Gateway
Mem 1 Mem 2
-00000000000. . -00000000000. ..
Class 1

_11111110010...

Process data slave frame

Gateway

Mem 1 Mem 2
->11111110010 -00000000000...

Writing Traffic
Store 1

Gateway

.. Mem 1 Mem 2
Writing Traffic S11111110010 ... | | -0111000000...
Store 2 | A
——— —1

Fig. 13. Simulation results for the Process Data
traffic.

The second test case is in charge of the Message
Data traffic (fig. 14). Two Slave devices of class 2
will exchange messages from MVB bus 1 to the
other, through the gateway. To be precise, the
function 5 in the first device will send some data to
the function 6 in the second one. The first time the
communication ends successfully and it is
represented in fig. 15. Initially, both devices establish
the connection and negotiate the credit (how many
packets may be sent before receiving the
acknowledgement, 3 in this case). Second, the
producer sends 3 consecutive packets and,
afterwards, the consumer confirms all of them.
Finally, last data packet is sent with a flag to indicate
that there are no more data and the receiver finishes
the communication with an acknowledgement.

Gateway
Class 2 Input queue []
MVB 1 | Interface 1[4 Output queue
MVB 2
I Interface 2 [P Input queue
Class 2
L Output queue [€—

Fig. 14. Test scenario for Message Data traffic.

Class 2

function 5

MVB 1

Gateway

Class 2

function 6

L 1

MVB 2

—| Connect Request - credit 4 - I—}

4—| Connect Confirm - credit 3 - Ii

Class 2 Gateway Class 2
function 5 function 6
I wmvBi | 1 wmvB2]
_| Data -0 -
Data -1 -

—| Data -2 -

4—' Ack -3 -

Class 2

function 5

MVB1 |

Gateway

Class 2

function 6

|1 wmvB2

Data -4 - last one

N

Fig. 15. Simulation results for Message Data traffic.

This

Ii

has

been a point-to-point

connection.

Another Message Data communication has been
simulated to verify the broadcast emission of packets.
And last, a refused connection request was tested
successfully (fig. 16).

Class 2

function 5

Gateway

MVB 1

—| Connect Request - credit 4 - l-—b

4——| Disconnect Request

MVB 2

Fig. 16. Simulation of a refused connection request.

5 Conclusions

A behavioral model of the MVB gateway has been
designed for purposes of testing by simulation. The
description is composed of a VHDL module to
generate the virtual electrical signals and a C one to

represent the behavior. The whole model has been
validated by simulating successfully 4 specific test
cases, including tens of frames. Therefore a VHDL
description of a class 2 device for synthesis can be
verified thoroughly by means of a realistic Message
Data traffic through the virtual gateway.

In this way, the specific verification tool created
by the authors to validate TCN designs has been
completed. In addition to the user interface, which
edits the configuration files, the simulated virtual
network includes interconnection to MVB buses.

Acknowledgement

The work described in this paper has been supported
by the Ministerio de Ciencia y Tecnologia of Spain
and FEDER in the framework of the TIC2001-0062
research project.

References:

[1]). Bergeron, Writing testbenches. Functional
verification of HDL models, Kluwer Academic
Publishers, 2000.

[2]R. Rajsuman, System—on-a-chip. Design and test,
Artech House Publishers, CA, 2000, pp. 10-11.
[3]J. Jiménez et al. Simulation enviroment to verify
industrial communication circuits, Proc. IEEE Int.
Conf. Industrial Electronics, Control and

Instrumentation, 1IT-07, Sevilla, 2002.

[4]]. Jiménez et al. A Top-Down Design for the
Train Communication Network, Proc. IEEE Int.
Conf. Industrial Technology, Maribor, 2003.

[5] G. Fadin, H. Kirrmann, P. Umiliacchi, ROSIN,
Railway Open System Interconnection Network.
Web Technologies for Railways, Proc.
Automation in Transportation, 1998.

[6]P. Umiliacchi, The Role of European research in
the railways modernisation process: The ROSIN
project, Proc. World Congress on Railway
Research, 1997.

[7]International Electrotechnical Commission, IEC
61375-1, Train Communication Network, 1999.
[8]H. Kirrmann, P. A. Zuber, The IEC/IEEE Train
Communication Network, IEEE Micro, vol. 21, n.

2, pp. 81-85, 87-92, March-April 2001.

[9]A. Chavarria et al. Slave node architecture for
Train Communications Networks, Proc. IEEE Int.
Conf. on Industrial Electronics, Control and
Instrumentation, Nagoya, 2000, pp. 2431-2436.

[10] ModelSim Foreign Language Interface,
Version 5.5¢, 2001.

[11] J. Jiménez, J. L. Martin, A. Astarloa, and A.
Zuloaga, Manchester decoding algorithm for
Multifunction Vehicle Bus, Proc. 2004 IEEE Int.
Conf. Industrial Technology, Hammamet, 2004.

