
[image: image1.wmf]

Abstract

Software change is inevitable. The Y2k problem, changes in currency and rapid growth of telephone infrastructure will all require changes in software and various legacy systems by which we mean those systems that resist modifications and evolution to meet new and constantly changing business requirements. In this paper, Software Engineering process, its methods and to implement Software Reengineering have been discussed so as to take advantage of new technology such as relational databases or communications which maintaining all functions and features that were proven to be useful in the original system.

Keywords: - Software Reengineering, Legacy Systems, Reengineering process, Reverse Engineering, Methods, Reengineering Tools.

Introduction: -

Over the last 50 years information processing systems have become the intellectual repositories for most business and government organizations. Today these organizations face the complex and costly problem of how best to restructure the installed base of outdated information processing resources while maintaining their legacy intellectual property. This legacy intellectual property continues to provide value as the organizations continue to survive in the fast-paced age of e-business, e-communication, e-organizations and in the case of military, e-warfare.

“Legacy software needs to be maintained even though its quality, performance, reliability and maintainability is deteriorating”. When legacy software becomes obsolete, some companies decides to go through a process of upgrading the software for various reasons, to be able for resale the software again in the new market or to use the software in the work place. Some other reasons for companies to reengineer are “to comply with new organizational standards (e.g. migrate legacy to Ada), upgrade to newer technologies/platforms/paradigms (e.g., object oriented), extend the software’s life expectancy, identify candidates for reuse and improve software maintainability”. Instead of reengineering why not redevelop the software? The problem with redeveloping the software over again is that many things will be lost. The bugs and errors in the legacy software that were fixed could occur again. “The original users and developers may no longer available to explain all the reasons behind the creation of, and subsequent modifications to, the software”. The time and money put into the legacy software is a valuable asset, redeveloping software would have all that money spent for nothing. The cost to reengineering is far less compared to redeveloping code. Of course, redevelopment cannot be ruled out. Valid reasons exist for completely replacing legacy software. But for the preceding reasons, software reengineering should be considered a viable alternative”. Instead of reengineering why not gradually improve the software through maintenance? “Recent studies indicate that Return-on-investment (ROI) for software reengineering far outweighs the benefits accrued through continuous improvement. A well-run continuous improvement plan can expect no more than 15% savings of the resources (personnel time and money). Most of the Baldridge Quality Award winners report only 5-12% savings due to continuous improvement. But software-reengineering surveys are showing savings on the order of 150-200% (ref. STSC reengineering projects survey)”. It has also been shown that reengineering has increased business performance by “(30-50%)”. This does not mean that gradually improving the software should not be considered. The primary reasons that companies go through reengineering is for two reasons, technology changes and staying one step ahead of the competition. “Reengineering is needed when, dramatic improvements are desired, the market and/or customer demands have shifted dramatically, the firm has been making incremental changes, but competitive conditions demand more”. To “migrate the software, software engineers begins with analyzing the legacy software to understand the current architecture and developing a strategy for mining and reusing existing assets”(SEI). By using the newly written documentation, the software reengineers try to program, most often in a new language. The process of working backward to the beginning to find the code is called reverse engineering. From this step if the software engineers decide to rewrite the code, it is called reengineering.

The people who benefit from the new software are the stakeholders. The stakeholders are “developers, testers, maintainers, system administrators, customers, end users, architect and representatives of interacting systems”. The stakeholders are expecting improved performance, reliability, usability, security, and function. Companies must reengineer to keep the stakeholders happy.

Another predicament with reengineering is that reengineering will displease the company if they do not have good leaders or teams that are able to go through the process. As legacy software ages there is a need for the older programmers with experience in older languages and experiences with reengineering to stay with the company to help the company through the process. There is also a need for programmers who have good experiences programming in new languages. If the team is not set up correctly then reengineering process will fail before it can get started. In this case, they may have to go outside of the company to hire consultants to help them through the process. Outside consultants may be just as bad as having no team at all. Outside consultants take time to learn about the software leading to more squandering of money. If the correct idea behind the project is not clearly explained to the consultants, then the project will lead to a waste of more money and time. There is a possibility that reengineering teams and leaders many decide to reengineer software when reengineering is not necessary. This will lead to wastage of time and money.

The need to reengineer is primarily driven by following factors:

1. Expansion of the information system’s functionality.

2. Improved maintainability of the information system using modern tools and techniques.

3. Changes in operational environment, such as moving from a centralized computational setting to one where use is decentralized.

4. Reduction of operational costs and improved reliability by replacing obsolete hardware suites with high speed, open-architecture systems.

5. Degradation to system structure due to long-term maintenance.

6. So many alterations and enhancements to a system that the existing architecture is no longer appropriate.

Most of our information systems have been developed using the system development methods, programming tools, data base handler etc. that were available when the work of development of system started. These systems have been in use for a long time. Since all software have limited lifetime. Hence for all software and systems a time came when there is a requirement to change the design and rebuild the whole system according to changed design and in new environment. This process is called reengineering. Hence “Reengineering is the systematic transformation of an existing system into a new form to realize quality improvements in operation, system capability, functionality, performance, or evolvability at a lower cost, schedule, or risk to the customer”

or

“Reengineering is the process of creating an abstract description of a system, reason about a change at the higher abstract level and then re-implements the system. This can be expressed with the following formula:

Reengineering = Reverse engineering + change + Forward engineering

Where Reverse engineering is the activity of defining a more abstract system that is easier to understand. The goal of reverse engineering is to capture and understanding of the behavior and the structure of the system and be able to communicate this to other i.e. the reverse engineering process identifies the system’s current components, discovers their dependencies and generates abstractions to manage complexity. It does not change the system. Reverse engineering involves two different phases:

1. Identifying the system’s current components and their dependencies.

2. The discovery of system’s current components and their dependencies.

Change (Logical Transformation) represents the changes in the system. It is of two types:

1. Changes in functionality i.e. removing the bugs from the system and enhancing the system functionality if needed. A change in functionality comes from change in business rules. It does not depend upon implementation technique i.e. how the forward engineering is carried out. A user of system never knows that whether the program is written in C or in JAVA.

2. Changes in implementation technique i.e. implementing the system in new environment. A new implementation technique mean that software will be developed in JAVA in place of C or use and object oriented database in place of relational database management system.

Forward Engineering is the normal system development activity. It is the activity of creating a representation, which is executable e.g., a program written in JAVA. In forward engineering we redesign the system from abstract representation to more specific representation.

How re-engineering?

Software reengineering is often dominated by a reverse engineering and design recovery stage. Once a software design has been recovered from an existing system there are several activities that has to be performed. For instance, the by-products of software reverse engineering methods can be used to support software engineering and software reuse. In the context of change to meet new requirements (such as the Euro currency change) and legacy design problems (such as Y2k problem), the application of reverse engineering is quite natural. In the area of software reuse, reverse engineering can be used to support construction of software libraries that can be used for new software development.

The most basic model of reengineering is the “horseshoe” model, because of it simplicity and its shows how reengineering is done. “It distinguishes different levels of reengineering analysis and provides a foundation for transformation at each level, especially for transformation to the architectural level”(SEI). In its most basic fundamental form there are three basic reengineering processes.

1) Analysis of an existing system

2) Logical transformation

3) Development of a new system

Reverse Engineering Change Forward

 Engineering

These three processes form the basis of the “horseshoe” model. The purpose of the visual metaphor of the “horseshoe” is to integrate the code-level and the architectural reengineering views of the world.

In its purest and most complete form (represented by the large outlined arrows), the first process recovers the architecture by extracting artifacts from source code. This recovered architecture is also evaluated with respect to a number of quality attributes such as performance, modifiability, security, or reliability.

The second process is architectural transformation. In this case, the “as-built” architecture is recovered and then reengineered to become a desirable new architecture. It is re-evaluated against the system’s quality goals and subject to other organizational and economic constraints.

The third process of the “horseshoe” uses architectural-based development (ABD) to instantiate the desired architecture. In this process, packaging issues are decided and interconnection strategies are chosen. Code-level artifacts from the legacy system are often wrapped or rewritten in order to fit into this new architecture.

The beginning of the reengineering process deals with architectural recovery and conformance. Before starting, the software engineers must agree on what they are looking for put into the new software. This will allow them to pick out what is useful in the legacy software. To pick out certain code, the code should have these characteristics:

· Performance

· Modifiability

· Security

· Reliability

Performance, one of the characteristics for selecting code, is how well a segment of code works with efficiency and time. If the code is slow and does very little, then that segment of code should be thrown away and rewritten. The new software should be allowed to get off with a good step; therefore, any code that has low performance ability should be rewritten to increase performance.

Modifiability is how well that segment of code is able to change to form into new code that can be used in the new software. If a segment of code is able to change with little or no problem, then that segment of code will allow for faster completion of the product. Most reengineering projects usually take procedural programming languages, and transform into object-oriented programs. An example of this would be changing C into C++, or more commonly COBOL into Object Oriented Cobol.

Security is how well the software is able to protect data types, and protect against unregulated changing of the data types. Today, security for the stakeholder’s machines and for the software product is very important. With more bugs in today’s software, there is a chance that someone can find or even worse write viruses that will take advantage of the stake holder’s machine by capitalizing on the holes in the software’s code.

Reliability is how well the segment of code will hold up to undefined input, and how long the software is able to withstand crashes. The more reliable the segment of code is, the less bugs and errors it should have. If the code is unreliable, and used in new software, then the stakeholders will lose trust in the company and their software.

The next phase, in the reengineering process, deals with the architectural transformation. This deals with the recovery of the source code. Once the code is taken and rewritten it is then re-evaluated to be sure that the code follows the new software’s quality goals. Before using any code, the software engineers must estimate on how much it will cost to use this rewritten code, since the major reason for reengineering is economical.

The last phase of “horseshoe” model is the development, which deals with the architectural, function level, and code structure representations. The “horseshoe” model uses architectural-based development (ABD) to design the software to the specifications to explore and perfecting software. “Areas of investigation include: how to define and represent architecture, requirements gathering/modeling and the connection to legacy assets, connection of the architecture to the production plan, and in general tools and techniques for all the above as it relates to product lines”(SEI). Before coding, the software engineers draw up DFD of the new software design. “ The design method uses techniques from FODA, use case analysis, and other methods”(SEI). “After the major components have been identified, the methods of use case analysis are used to identify the objects and complete the design”(SEI). As with most concepts in software reengineering there are faults in methods. The “horseshoe” model is most basic model that companies could use for reengineering; therefore, the “horseshoe” model is very broad to fit most companies but it is not specific enough for one project.

Models/Methods of Reengineering

In third generation of languages we use procedural languages. But in fourth generation we use object-oriented language. In some software there may be need to covert system of part of the system from functional language to object-oriented language with the help of reengineering. Here we will discuss a combination of object-oriented system development and software reengineering. Reengineering from a system in procedural language to object-oriented language four scenarios are possible.

1. Complete change in implementation technique and no change in functionality of the system.

2. Complete change in implementation technique and change in functionality of the system.

3. Partial change in implementation technique and no change in functionality of the system.

4. Partial change in implementation technique and change in the functionality of the system.

1. Complete change in implementation technique and no change in the functionality of the system:

A complete reengineering with no change in functionality will seldom occur for a large system. It is used for small system. The diagram below shows the overview of the whole process. The dark gray rectangle on the left bottom shows some existing system. It contains some functions shown as white rectangle , contains some codes I will call them functional object. During the process of reverse engineering we move more abstract level shown by lighter gray rectangles and the arrows. At the most abstract level there is analysis model, which contains objects shown by small circle I will call them analysis object. Each analysis object is motivated by at least one functional object. Then we make the appropriate changes i.e. to choose an object-oriented language in place of procedural language, which we want to redesign our system.

The third step is forward engineering. In forward engineering we redesign the whole system using object-oriented system development technique. The last step of this reengineering is to implement the analysis model. It is normal software development activity i.e. to moving to system design, detail design, coding shown by rectangles of darker and darker gray color. The dark black boxes in coding rectangle show objects in object-oriented system. After the coding there are testing, implementation and maintenance phases of normal system development.

Analysis Model

System Design

Detailed Design

Coding

 Testing &

 Implementation

2. Complete change in implementation technique and change in functionality of the system:

A Complete reengineering with no change in functionality is also rarely used for a large system. It is used for small system whose maintenance is difficult and costly. In this approach we remove the error in previous system as well as re-implement the system in new environment. The diagram shows the overview of the whole process. The dark gray rectangle on the left bottom shows existing system. It contains some functions shown as white rectangles, contains some codes (functional object). During the process of reverse engineering we move more abstract level shown by lighter gray rectangles and the arrows. At the most abstract level there is analysis model, which contains objects shown by small circle (analysis objects). Each analysis object is motivated by at least one functional object.

Now we make the appropriate changes in functional and implementation of the system according to our requirement (functional change) and we choose an object-oriented language in place procedural language in which we want to redesign our system.

The third step is forward engineering. In forward engineering we redesign the whole system using object-oriented system development technique. The last step of this reengineering is to implement the analysis model. It is normal software development activity i.e. to moving to system design, detail design, coding shown by rectangles of darker and darker gray color. The dark black boxes in coding rectangle show objects in object-oriented system. After the coding there are testing, implementation and maintenance phases of normal system development.

 Change

 Testing & Implemenation

3. Partial change in implementation technique and no change in functionality of the system

A partial reengineering with no change in functionality will occur for a large system, which require changes due to introduction new hardware, software, and new developer who are more comfortable with new environment. Hence it is more costly as well as time effective to redesign the system with latest technique. But it cannot done in one day. So it is better to replace only a part of the system and not the whole system. It is shown in the diagram below. The dark gray rectangle on the left bottom shows existing system. It contains some functions shown as white rectangles, contains some codes (functional object). The first step is to identify the part of the system that will be implemented using object-oriented approach.

The third step is forward engineering. In forward engineering we redesign the whole system using object-oriented system development technique. The last step of this reengineering is to implement the analysis model. It is normal software development activity i.e. to moving to system design, detail design, coding shown by rectangles of darker and darker gray color. The dark black boxes in coding rectangle show objects in object-oriented system. In parallel we design the interface between new subsystems and modified old system. After the coding there are testing, implementation and maintenance phases of normal system development

Analysis Model

System

Design

Detailed

Design

Coding

 Interface

 Part to be changed

Testing, Integration

& Implementation

4. Partial change in implementation technique and change in function of the system

A partial reengineering with change in

functionality will occur for a larger system which require changes due to introduction of new hardware, software and new developer who are not comfortable with the environment in which the software is developed. Hence it is more costly and time effective to redesign the system with latest technique then to remove the error. But it cannot be done in a single day. So it is better to replace only a part of the system and not the whole system. This is shown in the diagram given below. The dark gray rectangle on the left shows the existing system. It contains some functions shown as white rectangles, contains some code (functional object). The first step is to identify the part of the system that has to be changed using object-oriented approach. During the process of reverse engineering we move more abstract level only selected part, which we want to reengineer. At the most abstract level there is analysis model, which contains objects shown by small circle. Each analysis object is motivated by at least one functional object selected for reengineering. Now we make appropriate changes i.e. we change the design of the software as required (adding or removing modules) and choose an object-oriented language in place of procedural language in which we want to redesign our system. The third step is forward engineering which is also performed in the previous three models.

Analysis Model

System

Design

Detailed

Design

Coding

 Interface

 Part to be changed

Testing, Integration

& Implementation

Software Reengineering Tools

Software reengineering tools are those tools, which assist in program understanding or software maintenance activities.

Categories of Software Maintenance Tools

Ideally, software-reengineering tools should fit within and correspond to activities performed using software maintenance tools. Following are some categories of these tools

· Configuration management

· Monitoring/evaluation

· Redesign

· Code production/analysis

· Verification/validation

· Testing/integration

· Documentation

Reengineering tools classifications

· Browsing tools
· Code improvement tools (reformatting and restructuring)
· Reverse engineering tools.
There are many common and overlapping categories of reengineering tools in use at varying levels and complexity like:

· Querying or searching or browsing with respect to a collection of data about a system e.g. finding all identifiers with “GUI” in their name
· View Presentation creation of structured descriptions of some aspect of a system.
· Design recovery e.g. UML or data flow diagrams generated from procedural or OO code
· Program understanding which is clearly related in different ways to searching and design recovery
· Automated translation e.g. Binary translation, C to Pascal translation.
· Restructuring a kind of automated translation where the origin and target languages are the same.
So these are the various categories of tools, which are involved in reengineering legacy systems.

Summary

Software reengineering has emerged as a evolving technology. The main reason behind using software reengineering is that it can cut down the software costs a great deal as compared to the redeveloping the software and it can also maximize the efficiency of the existing system and at the same time preserving all the functions and features that were proven to be useful in the original system. Reengineering tools are still evolving and increasing in capacity, function, and number because of the ever increasing maintenance demand, industry disappointment with failed rewrite efforts, and the changing view of reengineering ‘s strategic importance.

 Abstract

 View

 Existing

 System

 New

System

Reengineering Process

O O O

O O O

Functional

 Design

O O Design

O O O

O O O

O O O O O O O O

O O O

Functional

 Design

O O Design

�

Functional

 Design

O O Design

O O Design

Functional

 Design

Software Re-Engineering “A Boon to Legacy Systems”

Author: - Jatinder Ohri

