PAGE

HLA COMPLIANT NETWORK ENABLED DISTRIBUTED MODELING AND SIMULATION INFRASTRUCTURE DESIGN
ASAD WAQAR MALIK, ABDUL BASIT, SHOAB A KHAN

Computer Software Engineering

National University Of Sciences And Technology

Tamiz-ud-Din Road Rawalpindi

PAKISTAN

Abstract

This paper describes HLA Compliant Network Enabled Distributed Modeling and Simulation Infrastructure Design, which can be used for simulating large, complex distributed networks. HLA is an IEEE standard 1516 for distributed modeling and simulation, whereas Omnet is a tool, which is used to simulate networks (network could be LAN, WAN, or ad hoc network). An HLA layer is wrapped on top of OMNET to make it HLA federate. As an HLA federate Omnet can now communicate with other federates through RTI. RTI acts as an operating system for HLA based simulations. This infrastructure is similar to C4I (Command, Control, Communication and Computer Intelligence) systems. This infrastructure would help to simulate satellite communication, tracking system and Battle Field simulations. Integrating Omnet tool with HLA provide us flexibility and interoperability for simulations.

Keywords

Federate, Federation, HLA, Runtime Infrastructure, Omnet++, and Omnet Instance, C4I.

1 Introduction

The High Level Architecture (HLA) was designed as component integration standard for cooperating distributed simulations [1].

The HLA is a middleware standard for sharing information between distributed simulation components. It can acts as communication infrastructure for an enduring network of shared virtual simulations. All simulation based on HLA can interoperate effortlessly [8][9].

This paper presents an infrastructure, which can be used for simulating different applications especially from army’s point of view. This infrastructure can be used to simulate a network of tracking system, monitoring system, radar system and battlefield simulations.

1.1 Overview Of Different Distributed Architecture Approaches
There are different technologies available for distributed applications like Common Object Request Broker Architecture (CORBA), Remote Method Invocation (RMI), Microsoft Direct play and HLA. Each has its own pros and cons. There are number of disparities between these approaches. Both CORBA and HLA are concerned with legacy applications, possibly in different languages. CORBA’s basic approach is to provide support for CORBA-compliant middleware that communicates with legacy applications. Since CORBA supports most major language bindings, the middleware can be implemented in the most convenient language and be guaranteed to interoperate with any CORBA client. Although HLA has API’s for C++, Ada, and Java, the responsibility for interoperability between federates in different languages is placed on the RTI implementers. This adds a burden to implementing an HLA federation in multiple languages, in contrast to CORBA imposing absolutely no overhead whatsoever for cross-language compatibility. RMI being a Java-based technology is essentially not cross-language at all. Interoperability to non-Java programs must be done via JNI and has no common interface, as with CORBA. However, Java’s inherent cross-platform capabilities substantially increase the number of platforms on which distributed applications may be run. CORBA and RMI are oriented towards general applications, whereas HLA is specifically targeted at distributed simulations. Consequently, HLA has considerably more infrastructure directly aimed at supporting simulation models through the Federation Rules and the simulation-specific services, such as Time Management. Since all simulations have the concept of a simulated clock, this service is essential to proper functioning of an HLA federation. However, a distributed CORBA or RMI application may not even have the notion of simulated time, so it would make no sense for either of those architectures to include such features. The HLA rules impose much stricter constraints on federates than either CORBA or RMI. For example, it is entirely feasible for a Java client to use both RMI and CORBA to communicate with remote objects. Indeed, limitations the ability of CORBA to incorporate non-CORBA objects may necessitate such a possibility in some cases. HLA provides publishing and subscription services but does not support direct communication between objects, as CORBA and RMI do. HLA’s notion of transfer of object ownership is a unique capability among the other architectures [4]. This capability can be a powerful modeling tool in certain types of simulation. The component of Direct X that supports multi-player, networked applications is called DirectPlay. The function provided by Direct Play is similar to those provided by the HLA RTI, with a few significant differences. Direct Play provides some features specific to gaming, and also provides greater meta-data support than the RTI. Direct Play doesn’t, however, provide any time synchronization features; it is built to support a DIS-like, loose causality model. Direct Play also differs from the RTI in that it does not provide any support for determining data routing. Under Direct Play there is no equivalent of the RTI’s publication/subscription paradigm. Instead it is up to applications to decide how to route data [8].

1.2 Reasons For Wrapping HLA Layer On OMNET

CORBA architecture is used for distributed applications remember there is a difference between distributed applications and distributed simulations. CORBA doesn’t have any time management API’s available it depends upon developers how they implement it. CORBA doesn’t support unicast or multicast by default. As far as Microsoft Direct Play is concern it’s a language and platform dependent and more over it arrange all the packets in a single queue irrespective of their time, thus Direct Play also doesn’t support any time scheduling. RMI provides us platform independence but at the same time it doesn’t provide cross language compatibility. HLA is build for distributed simulations and it satisfies all the basic requirements, which is required for simulation and it also provide cross platform capabilities, interoperability and flexibility.

HLA is far more flexible then any other distributed architecture that’s why proposed system is based upon HLA.

1.3 High Level Architecture
HLA is not only simulator architecture but It contains specifications about how to operate simulators together; how and what data to communicate, specifications about the individual simulators, what services should be offered by a simulator and how the simulator works [5] [9] [15].
1.4 Runtime Infrastructure
RTI is general-purpose distributed operating system software, which provides the common interface services to HLA based simulations. The RTI can be conceived as a post office for all data traffic in the simulator. All information that changes during a simulation, which needs to be shared between several simulators, needs to pass though the RTI [5] [7].

1.5 Rules To Make Simulation HLA Compliant

The Federation Rules describe the responsibilities of federates and their relationships with RTI.

There are ten rules, five rules are related to the federation and five to federate [7].

Two of the most important rules are

1.During a federation execution, all exchange of FOM data among federates shall occur via the RTI.

2.During a federation execution, federates shall interact with the RTI in accordance with the HLA interface specification.

2.0 OMNET
 OMNeT++ is a discrete event simulation environment. Its primary application area is the simulation of communication networks, but because of its generic and flexible architecture, it is successfully used in other areas like the simulation of complex IT systems, queuing networks or hardware architectures. OMNeT++ provides component architecture for models. Components (modules) are programmed in C++, and then assembled into larger components and models using a high-level language.

3.0 Problem Statement

At present, there exists no communications mechanism for network simulation that is

generalizable enough to support any kind of simulation, usable enough to encourage widespread adoption, standardizable enough to allow universal interoperability, and adaptable enough to permit runtime extension of its ontology.

There is lot of distributed network simulators available but no one provide interface to external simulations running on heterogeneous systems.

 Most of the distributed simulations developed so far are platform and language dependent they can only communicate with other simulations if they are developed in the same language platform. Some time it may need to simulate large complex network devices running on heterogeneous platform, developed in different languages requires a standard way to build a simulations so that they can communicate each other and exchange messages.

To simulate a large network requires a network simulation tool, which can communicate with other simulations, and so far there is no network simulation tool, which provides interface to external simulations. Without generalization, the mechanism would limit the type of simulation that one could create; without usability, application developers would avoid using the mechanism; without standardization, separate implementations could not interoperate; and without RTI, the mechanism would prevent simulation from evolving over time and adapting to new application requirements [12].

4.0 Objectives

Main Objective is to create an infrastructure, which can be used to simulate large complex distributed networks by making Omnet HLA compliant So that it can communicate with other simulations, and this infrastructure enables us to create large complex network and provides interoperability and flexibility in simulations.

5.0 Working Background Problems

In the past OMNET simulation tool is used to develop independent. OMNET doesn’t allow using sockets for communication.

Some of the problems with socket in Omnet are listed below.

· OMNET doesn’t allow communication with socket using graphical display.

· In sockets “recv” API is a blocking call.

· Creating additional threads in OMNET for communication slow down the simulation dramatically.

· Using additional threads may some how work well for some limited simulations but it doesn’t provide flexibility.

Thus using socket for communication one has to compromise on flexibility and reliability, which limits the scope of simulations.

6.0 Proposed Solution
By keeping the above problems in mind solution requires some flexible and reliable means of communication, which allow Omnet to communicate with other simulations running on heterogeneous platform.

In HLA Compliant simulations all the communication must be through the RTI, as stated in rule 2. So basic approach of proposed infrastructure is to simulate large distributed network by making Omnet HLA compliant.

In proposed system HLA layer is wrapped on top of Omnet to make it HLA federate. As an HLA federate Omnet can now communicate with other federates through RTI.

Thus making OMNET HLA compliant we can simulate any kind of network and simulations running on any heterogeneous platform.

7.0 Making OMNET HLA Compliant

The two classes that provide the interface between the federate and the RTI are the RTIambassador and FederateAmbassador. The RTIambassador class defines and implements the interface that is used by the federate to communicate with the RTI. The FederateAmbassador class defines the interface the RTI will use to communicate with the federate. The FederateAmbassador class is an abstract base class that the federate must implement (sub-class and define the methods) in order to successfully compile a federate with the RTI.

On the other hand in OMNET the application logic is implemented in simple module virtual function activity () or handleMessage(). These are virtual functions of cSimpleModule and any class inherit from cSimpleModule must implement it. If activity is used then space the space needed in heap should be defined in a macro function call, and if handleMessage() is used than stack size is not required simply place zero in function call, macro processor itself allocates space from the process stack. HandleMessage is called itself when any packet or frame arrives at the arrival gate where as activity is a corutine thread (some time call parallel processes) that starts execution when the application starts.

In Omnet all the logic is implement in the Classes that inherited from cSimpleModule. To make OMNET acts as a federate the class that inherited from cSimpleModule must also be inherited from FederateAmbassador class and implement its call back function in order to successful communication with other federate through RTI [10] [15] [16].

8.0 Example

This infrastructure is used to simulate a radar system. Simulation of the radar system consists of many radars acting as federates whereas Omnet is simulating a countrywide network, which is also acting as a federate.

Radar federate publish their attributes and Omnet federate subscribe for these attributes. RTI takes care of communication between subscribers and publishers of the attributes; it delivers change to the subscriber whenever there is a change in subscribed attributes.

[image: image1.png]warsimulation O

0

Rd 3

Fig. 3 Node A in Omnet acting as a Main Station, whenever it receives data from radar federates through RTI, it transmits it to a countrywide network in Omnet.
9.0 Conclusion
HLA Compliant distributed modeling and infrastructure is feasible for large distributed simulations, especially from army perspective.

Proposed infrastructure can be used effectively in any simulation in which network plays an important role and communicating with some external simulations; running on heterogeneous platform and developed in any language like radar system, sensors network, tracking system etc [13] [14].

Using this infrastructure many of the problems has eliminated like maintaining dynamic entities,

adding dynamic objects in simulation, sending packet to distributed nodes and keep track of packet.

References:

[1] F. Kuhl, R. Weatherly, J. Dahmann, and A. Jones. CreatingComputer Simulation Systems: An Introduction to the High Level Architecture. Prentice Hall, October 1999.

[2] S. I. S. Committee. IEEE P1516.1/D4 Draft Standard for Modeling and Simulation, High Level Architecture — Federate Interface Specification. IEEE Computer Society, 1999.
[3] Andrzej Kapolka, The Extensible Run-Time Infrastructure (XRTI): An Emerging Middleware Standard for Interoperable Networked Virtual Environments

[4]Arnold Buss, Leroy Jackson Distributed Simulation Modeling: A Comparison Of HLA,CORBA and RMI, Proceedings of the 1998 Winter Simulation Conference

[5] Peter Toft, DMI “How to become an HLA guru in a short(er) time” COT/6-6-V1.0

[6] DMSO, "The DMSO High Level Architecture (HLA).” 1996.
[7] SAIC, VTC, DAS, RTI 1.3-Next Generation Programmer’s Guide Version 3.2 2000
[8]: Jesse S. Aronson, Approaches to Runtime Communications for Distributed Simulations
[9] Defense Modeling and Simulation Office. “Runtime Infrastructure (RTI).” Available at

https://www.dmso.mil/public/transition/hla/rti/. October 2003.

[10] Naur, P. et al., .Report on the Algorithmic Language ALGOL 60,. in Communications of the ACM, vol. 6, no. 1, pp. 1.17, Jan. 1963.

[11] IEEE 100, The Authoritative Dictionary of IEEE Standards Term, Seventh Edition.

[12]Byers, Carl and Lily Lam. 1997. TRAXXTM: An Extensible Federate Development Framework to Support HLA Compliant Federation Implementation. Paper 97S-SIW-043. Presented at the Spring 1997 Simulation Interoperability Workshop, Orlando, FL.
[13] Pottie, G. J., and Kaiser, W. J. “Wireless Integrated Network Sensors,” in Communications of the ACM, Vol. 43, No. 5, May 2000
[14] D. Estrin, R. Govindan, and J. Heidemann, “Next Century Challenges: Scalable Coordination in Sensor Networks,” in Proc. of the 5th Annual ACM/IEEE International Conf. on Mobile Computing and Networking, 1999, pp. 174–185.

[15] Luqi, V. Berzins, and R. Yeh, “A Prototyping Language for Real-Time Software,” IEEE Transactions on Software Engineering, Vol. 14, No.10, October 1988, pp. 1409-1423.
[16] IST-SP-96-01, A Glossary of Modeling and Simulation Terms for Distributed Interactive Simulation(DIS).

Omnet module Acting as a Federate

OMNET

FEDERATES

Runtime Infrastructure

Fig. 1 One of the modules in OMNET work as a federate and communicating with others external federates

Simulating Network As a HLA federate

Required Setting

1.Copy all libraries of Omnet into “..\Program Files\RTI\lib” folder and copy all Omnet header files from “..\Omnet++\include\” into “..\Program Files\RTI\include” folder and make your simulation in “. \Rti\samples\”

2.Copy jvm.dll, libRTI-NG.dll and libFedTime.dll into your current folder.

3.To retain traditional settings of Omnet we have to use “dsp” and “dsw” files, which are already available in any of Omnet samples. Simply copy these two files from any sample and paste in your current application folder. Double click on “dsw” file MSVC will open.

4.You need to edit a couple of project settings. Pressing Alt+F7 accesses the Project

Settings dialogue. Begin by selecting Win32 Debug Tkenv in the Settings drop down box.

Click on the C/C++ tab and select Code Generation from the Category drop down

box choose debug single thread.

After that, select Preprocessor from the Category drop down box.

In the Additional Include Directories field, you will need to specify the directory

containing the include files for RTI. In the default installation, this is the

..\Program Files\RTI\include\ directory.

Click on the Link tab and select Input from the Category drop down box.

In the Object/library modules text field, add the libraries jvm.lib, libRTI-NG.lib and libFedTime.lib. In the Additional library path text field, add the directory containing the RTI lib files. In the default installation, this is the ..\Program Files\RTI\lib directory.

5.In order to make HLA compliant distributed network simulation we have to drive a class from “FederateAmbassador” name it as “BaseFederateAmbassador”. We add this layer because “FederateAmbassador” is a pure virtual class so we inherited our “BaseFederteAmbassador” class from it and provide empty definition of all virtual functions. Now the developer has to only inherit its class from BaseFederateAmbassador. By adding this layer (BaseFederateAmbassador) a developer just has to implement those functions, which he needs in his simulation.

In order to make omnet as a federate, a class must inherited from “SimpleModule” and “BaseFederateAmbassador” simultaneously and implements a set of functions that you needed in your application or simulation.

To make it federate requires certain function calls which must be executed first.

List of functions are given below:

CreateFederationExecution(….)

JoinFederationExecution (…)

GetParameterHandle (….)

SubscribeInteractionClass (….)

PublishInteractionClass (….)

GetObjectClassHandle (….)

GetAttributeHandle (….)

PublishObjectClass (….)

SubscribeObjectClassAttributes (…)

Now the infrastructure is developed and only requires implementing certain call back function in order to communicate with other simulations.

6.To run the simulation you have to create two-batch files one is run.bat and another is build.bat

Run. bat	

setlocal

path=..\..\jre\bin\client;..\..\lib

“application”.exe

endlocal

pause

build.bat

Setlocal

set INCLUDE=..\..\include;%INCLUDE%

set LIB=..\..\lib;%LIB%

cl “application”.cpp BaseFederateAmbassador.cpp StdAfx.cpp /GX /MD /link libRTI-NG.lib libFedTime.lib

endlocal

By double clicking on a build.bat some configurations will be updated

Double Click on run.bat your Omnet start acting as a federate

_1167153608

