
Pattern-based Extensible Index Technique for XML documents

Jungsuk Song†, Tackgon Kim*, Woosaeng Kim*
†R&D Institute, Hanwha S&C *Dept. of Computer Science, Kwangwoon University
Janggyo-dong, Joong-gu, Seoul, Korea Wolkye-dong, Nowon-gu, Seoul, Korea

Abstract: - Recently, a lot of index techniques for storing and querying XML document have been studied so far
and many researches of them used coordinate-based methods. But update operation and query processing to
express structural relations among elements, attributes and texts make a large burden. In this paper, we propose an
efficient extensible index technique based on pattern information. It supports containment queries and pattern
queries and it does not cause serious performance degradations even if there are frequent update operations.
Management of XML Schema’s pattern information can reduce the number of nodes participating in the
containment relationship query processing among each element. Overall, the performance could be improved by
reduction of the number of times for traversing nodes.

Key-Words: - Extensible Index, XML Indexing, XML Schema, Containment Query, Pattern Query

1 Introduction

The existing multimedia applications use for the
limited area of the simple play for the image, audio
and video. But multimedia applications have been
expanded into services through the comprehensive
uses of multimedia resources with increases of the
explosive internet popularization and various
demands of internet users these days. XML [1], which
is derived from SGML [2] through recommendations
of W3C (World Wide Web Consortium), comes up as
a standard language, that can exchange the data
through Internet and still can keep the interoperability,
in recent years. 1

There are many applications with abundant
representation ability of XML language. It is the trend
to use XML for expression of all the data in business
application program. Therefore, there are steady
efforts for the study to store and retrieve the XML
documents in the database efficiently and it needs to
provide any methods to preserve not only the
structural contents also positional information in the
XML documents.

In this paper, we propose an extensible index
technique that expresses structural pattern information
based on XML schema structure using relational
database. We will show pattern-based method that can
efficiently perform storing and querying XML
document through the proposed method.

The pattern-based method uses pattern information
that is based on the appearance of child nodes per each

* The present research has been conducted by the
Research Grant of Kwangwoon University in 2005.

parent node. It analyzes and indices the type of child
nodes based on XML schema that each node contains,
and then it can express structural pattern information
of XML documents. Through this index, each node of
XML tree can be expressed as pattern information.
And it can be performed better than coordinate-based
index method because it can easily process the relation
information between elements in query processing.

This paper is organized as follows. In chapter 2, we
review related works about index techniques of XML
documents. In chapter 3, we introduce an efficient
extensible index technique based on pattern
information. In chapter 4, we present operations for
extensible index technique, and in chapter 5, we
explain query examples for containment queries and
pattern query. In chapter 6, we show the performance
evaluation between the proposed technique and
existing coordinate-based technique. Finally, we make
a conclusion in chapter 7.

2 Related Works

In position-based indexing, queries are processed
by manipulating the range of offsets of words,
elements or attributes. GCL position-based model was
proposed in [3]. GCL is based on a data structure
called a concordance list, which consists of text
intervals called extents. Each extent is described by a
start position and length. It is possible to process the
query to express containment relation, thanks to the
description for the range of a position.

In path-based indexing, the location of words is
expressed as structural elements and the paths in tree

structures are used for the processing of query. In
order to determine the position of a word within a
document, it is necessary to construct an encoding of
the path of the element names from the root of the
document to the leaf node containing the word. And
then, for each word occurrence, the inverted list
includes a representation of the path to that word.

In [4], data structure for indexing XML documents
based on relative region coordinates is used. Region
coordinates describe the location of content data in
XML documents. They refer to start and end points of
text sequences in XML documents. Region
coordinates are adjusted by offsets relative to the
corresponding region coordinate of the parent node in
the index structure.

In [5], new technique based on bitmap indexing was
introduced. XML documents are represented and
indexed using a bitmap indexing technique. They
define the similarity and popularity of the available
operations in bitmap indices and propose a method for
partitioning a XML document set. 2-dimensional
bitmap index is extended to a 3-dimensional bitmap
index, called BitCube. They define statistical
measurements and correlation coefficient. BitCube
proved eminent performance in performance
assessment with systems such as existent XQEngine,
XYZFind already through the fast search speed.

[6] uses numbering method that made grasp
hierarchical relationship between composition
elements using the number given suitable number to
each composition element on XML document.

[7] explains about index graph that changes
structure to find a fast route that is used often using
data mining method. It has a problem that it must
update the index graph every time the query processes
fundamentally inaccurate index query.

3 Pattern-based Extensible Index

In this section, we introduce our proposed index
model, and how to manage pattern information for
index.

3.1 Table Schemas for Index

We use the table schema in figure 1 in order to store
positional and pattern information of nodes.

Schemas for storing positional information consist
of six tables: Element, Attribute, Path, and Text,
Pattern, PatternIndex.

The Element table indicates information about

element nodes with docID, pathID, and parentAddr
which is positional information, and header, offset.

Element (docID, pathID, parentAddr, header, offset)
Attribute (docID, pathID, attrName, attrValue)
Text (docID, pathID, textValue)
Path (pathID, pathExp)
Pattern (patternID, curNode, childNodes)
PatternIndex (patternID, docID, pathID)

Fig. 1 Schemas for extensible index based on pattern

The Attribute and Text table stores each

identification and positional information about
attribute and text contents of elements.

The Path table keeps information about simple path.
Fields are pathID that is path identifier and pathExp
that is simple path of each node's.

The Pattern Table contains pattern information for
child nodes that have each node and relevant node.
Field that compose table is consisted of patternID for
pattern identifier, curNode for describing pattern
information to child node for one node, childNodes
field etc.

The PatternIndex table stores occurrence
availability of pattern using structure of inverted index
about each XML document, and is consisted of docID,
pathID field to express patternID and actual position
in XML document that is pattern identifier field that
composes table expression pattern of each node.

3.2 Description of extensible index technique

To define extensible index technique, we consider
an XML document D rooted at r. Let’s denote P as a
parent node of the tree and C1, C2, …, Cn are child
nodes of P node.

Definition 1. (Extensible index) Extensible index
describes an address of node in an XML document.
Address of the child node among sibling nodes C1, C2,
…, Cn of an XML document are combinations of
numbers (A1, A2), where A1 is address of parent node,
A2 is offset for child node. C1 and C2 are expressed as
bit string expression. Consecutive bit string of A1 and
A2 means extensible index for a child node.

AddressOfChild=AddressOfParent+OffsetOfChild (1)

Definition 2. (Offset) Offset among child nodes are
given to an order with a binary bit form according to a
sequence order like A = {000, 001, 010, 011, 100, …,
n-1} as described in figure 2.

Fig. 2 An example tree and offset list

Definition 3. (Header) In order to store the number of
bit string for processing offset of child nodes, initial
value of directory header is assigned. Formula for
determining initial value of header is as follows:

Header=ceiling (log2NumberOfChildNode) (2)

3.3 Description of pattern index technique

Suppose as following to define pattern index
techniques based on XML schema.

XML document is known as D and root node is
known as r. And P means node of tree, and C1, C2, …,
Cn are child nodes of each P. And set of child nodes of
P node is expressed into the brackets such as '[child]'.

Definition 4. (Pattern index) Pattern Index expresses
pattern of node structure in XML document. Define
pattern for number of cases that child node of each P
node can be calculated through the information of
XML schema and build the index. And expression of
pattern can be denoted with pair of P nodes and child
nodes. Following is the notation of pattern index.

Pattern: P/[subset{C1, C2, …, Cn }]

We use appearance information of possible child

nodes about each node P to express pattern. So it can
express structural information reflecting pattern
information about each node in extension index, and
can easily apply the technique to use relative pattern
information because we only consider one node and its
child nodes.

3.3.1 Extraction of pattern information

Element's appearance is decided by Order
Indicators and these are defined as, Sequence, Choice,
and Arbitrary type in XML schema.

Definition 5. (Sequence pattern) It defines the
sequence of elements, when the sequence of element is
defined in <xsd:Sequence> tags.

Figure 3 shows the sequence pattern in XML

Schema and four patterns {NULL, 'A', 'B', 'A, B'} can
be achieved.

<xsd:Sequence>
 <xsd:element name="A" type="xsd:string" />
 <xsd:element name="B" type="xsd:string" />
</xsd:Sequence>

Fig. 3 An Example of Sequence order identifier

Definition 6. (Choice pattern) In case of selecting
one element among several elements, the number of
element is defined in <xsd:Choice> tags.

Figure 4 shows choice pattern for XML schema.
Result pattern {'A', 'B'} can be generated.

<xsd:Choice>
 <xsd:element name="A" type="xsd:string" />
 <xsd:element name="B" type="xsd:string" />
</xsd:Choice>

Fig. 4 An Example of Choice order identifier

Definition 7. (Arbitrary pattern) It means pattern
that is described without any rules such as elements in
the <xsd:complexType> tags.

Figure 5 shows arbitrary pattern in XML Schema.
Five pattern of result set {NULL, 'A', 'B', 'A, B', 'B,
A'} can be possible.

<xsd:ComplexType>
 <xsd:element name="A" type="xsd:string" />
 <xsd:element name="B" type="xsd:string" />
</xsd:ComplexType>

Fig. 5 An Example of Arbitrary order identifier

3.3.2 Saving the Patterns

After analyzing type of pattern through XML
Schema, these contents are stored on Pattern table and
processed such a way as figure 6.

1. Analyze the XML scheme
1.1 switch(Order Identifier)
1.1.1 case complexType :get types of pattern from execution equation 4
1.1.2 case Sequence : get types of pattern from execution equation 5
1.1.3 case Choice : get types of pattern from the number of elements
2. Save the pattern on Pattern Table
2.1 Number the patterns and save the patternID field on Pattern Table
2.2 Save the parent element to the curNode field on Pattern Table
2.3 Save the patterns to the childNodes field on Pattern Table
2.4 if curNode is a leaf node and pattern is nothing then childNodes

field’s value is ‘NULL’
Fig. 6 Pseudo algorithm for saving the patterns

Example 1. Example figure 7 will be stored into
relational table like figure 8. Result patterns are
'A/[NULL]', 'A/[B] ',A/[C], 'A/[B, C]', ‘B/[NULL]’.

<xsd:element name="A" type="xsd:string">
<xsd:Sequence>
 <xsd:element name="A" type="xsd:string" />
 <xsd:element name="B" type="xsd:string" />
</xsd:Sequence>
</xsd:element>

Fig. 7 A sample of XML schema
patternID curNode childNodes

1 A A, B
2 A A
3 A B
4 A NULL
5 B NULL

Fig. 8 A Result of Pattern table from figure 7

3.3.3 Building the PatternIndex Table

First, we get pattern information and store it on
PatternIndex table using algorithm of figure 9. It
constructs index for each element through XML
document.

1. Analyze the XML tree
2. per each element
2.1 get pattern
2.2 match the pattern with the Pattern Table
2.3 get patternID from the Pattern Table
3. get the path expression
4. Save the PatternIndex Table
4.1 save the patternID to PatternID field on PatternIndex Table
4.2 save the docID field on PatternIndex Table from document ID
4.3 save the pathID to pathID field on PatternIndex Table

Fig. 9 Pseudo algorithm to build PatternIndex

Example 2. In algorithm of figure 6, we saved pattern
information. We bring patternID value that
corresponds to each pattern by analyzing pattern from
Pattern table that each node has, and then stores on
PatternIndex table. Next we bring pathID value from
Path table about each path. figure 10(b) shows
PatternIndex table with figure 10(a)’s XML tree.

(a) (b)

Fig. 10 An example of (a) XML tree and (b)
PatternIndex table

4 Operations for extensible index

4.1 Access of nodes

Access of nodes by extensible index is for search of
XML document that is possessing relevant node
ultimately. This paper examined method that can
search various containment relations between nodes

using simple query language through chapter 5.

4.2 Update of nodes

Because it is stored the field value as the value of
node in table of relational database in extensible index
technique, the existing value performs through process
that replace existent value by new value simply at
update. Figure 11 is an example of XML document to
explain the process of update operation.

<document>
 <report>
 <author>Video database</author>
 <date>June 12, 2000</date>
 </report>
 <paper>
 <title>XML query data model</title>
 <author>Don Robie</author>
 <source>W3C, June 2000</source>
 </paper>
</document>

Fig. 11 An example of XML Document

Figure 12 shows the address information of three
different index techniques. And figure 13 depicts the
result address after update operation that lower left
node changes from ‘Video database’ to ‘Multimedia
database’ completed

Fig. 12 Three index methods

Fig. 13 Result after update

pathID docID patternID
1 1 1
2 1 1
3 1 4
4 1 5
5 1 5

Bold faced values are changed values. All of the
position information for absolute-based method
changed. In case of relative–based method, position
information for some nodes was not changed.
However, for the case of the proposed extensible index
techniques, there is no change of the position
information by updating.

4.3 Insertion of a node

Figure 14 shows pseudo algorithm for changing
index structure from the insertion of a node.

1. Calculate the location to insert a new node into the sibling nodes.
2. Compare and operate through the header and offset of previous node.
3. If (offset of previous node < 2header of previous node -1)
3.1. NewOffset=offset of previous node + 1
3.2. NewHeader=header of previous node
4. If (offset of previous node >= 2header of previous node -1)
4.1. Header of new previous node = header of old previous node + 1
4.2. Offset of new previous node = offset of old previous node << 1
4.3. Header of new inserted node = header of old previous node + 1
4.4. Offset of new inserted node = (offset of old previous node << 1)+1

Fig. 14 Pseudo algorithm for insertion operation

Example 3. If C4 node is inserted into the table in
figure 15, it is to be inserted into the sufficient free
space. New header value and new offset value are
calculated according to the above pseudo algorithm.

Node Address of P Header Offset
C1 01 2 00
C2 01 2 01
C3 01 2 10
C4 01 2 11

Fig. 15 Table after insertion of node C4

Example 4. Unlike C4, consecutive insertion of node
C5 after example 1 makes different result. In this
situation, there is no sufficient free space for the new
offset according to the old header, so inserted node
should split with previous node. Figure 16 shows the
table after insertion of node C5.

Node Address of P Header Offset
C1 01 2 00
C2 01 2 01
C3 01 2 10
C4 01 3 110
C5 01 3 111

Fig. 16 Table after insertion of node C5

5 Query Processing

In this section, we use containment relationship

queries[8][9] and pattern query to evaluate extensible
index based on pattern information technique such as
direct containment query, indirect containment query,
perfect containment query, pattern query.

5.1 Direct containment query

Definition 8. (Direct containment) Direct
containment relationship query indicates the query
that is consisted of direct containment relationship
between elements, attributes, and texts. The symbol ‘/’
indicates direct containment (i.e., parent-child
relationship).

Parent (parentAddr+offset) =Child (parentAddr) (3)

5.2 Indirect containment query

Definition 9. (Indirect containment) Indirect
containment relationship query indicates the query
that is consisted of indirect containment relationship
between elements, attributes, and texts. The symbol
‘//’ indicates indirect containment relation (i.e.,
ancestor-descendent relationship).

Ancestor(parentAddr+offset)⊂Descendant(parentAddr) (4)

5.3 Complete containment query

Definition 10. (Complete containment) Complete
containment relationship query indicates the query
that is consisted of complete containment relationship
between elements, attributes, and texts. It can be
executed to compare the text value of a node and the
parameter in the query condition.

5.4 Pattern Query

Definition 11. (Pattern query) It means the query
that search patterns having arbitrary node including
specified child nodes, and it searches pattern of XML
schema and can be used for searching the document
including relevant pattern.

Pattern: P/ [C1, C2, …, Cn]

Where 'P' = PatternIndex.curNode and
'C1, C2, …, Cn’ = PatternIndex.childNode

It also can query using wild card characters to

support query that find structure including specified
pattern. ‘*’ expresses to find the case of the pattern is 0

or more and ‘+’ expresses to find that it is 1 or more.
And ‘?’ is the case of 0 or 1 and ‘^’ is the case of

excluding the pattern.

Example 5. Figure 17 shows example of pattern query.
And it shows query that find patterns having nodes of '
title', ' star' as the child nodes under of 'Movie' node.

Query : movie/[title, star]
SELECT …
FROM …
WHERE Pattern.curNode = 'movie'
 and Pattern.childNodes = concat('title', 'star') and …

Fig. 17 Pattern query

Example 6. Figure 18 shows example of query that
find patterns including specified pattern. It shows the
query that finds the patterns that includes one or more
other patterns and has the ‘title’ node under 'Movie'
node as a child node.

Query : movie/[title+]
SELECT …
FROM …
WHERE Pattern.curNode = 'movie'
 and Pattern.childNodes like '%title%' …

Fig. 18 Pattern query with filter character

6 Performance Evaluation

In this chapter, we show the comparison between
conventional index technique and extensible index
based on pattern technique. Proposed algorithm
reduces the workload to perform the comparison and
update operation when it retrieves and indicates data
in the relational tables for these indices.

6.1 The number of updated nodes

In the XML tree, according to growing the depth
and the width, the number of nodes is to be increased
in a geometrical progression. In the situation that
update of an offset data affects other node by the
insertion of a node, in the worst case, all of the
position data should be reconstructed and it is caused
lots of cost for the operation.

Let XML tree is balanced binary tree and depth is
from 1 to k, in case using coordinate-based index and
extensible index, the accumulative number of the node
of which offset data is changed from the insertion and
update operations are as follows.

Insert operation on leaf nodes
Absolute coordinate = (5)

Relative coordinate = (6)

Extensible index = 12 −k (7)

Update operation on leaf nodes

Absolute coordinate = (8)

Relative coordinate = (9)

Extensible index = Constant (10)

Fig. 19 Insert operation on leaf nodes

Fig. 20 Update operation on leaf nodes

6.2 Pattern-based extensible index technique

To have a simple comparison between conventional
coordinate-based index technique and proposed
technique, we choose a situation when the XML tree T
is balanced.

Therefore, the number of child node is CD-1, as the
average number of child nodes is C and depth is D.
And D is from 1, 2, …k (depth of tree).

We consider two queries that pattern query and
direct containment query. Let’s denote RPq() the
workload of searched nodes on pattern query, and
RCq() the workload of searched nodes on containment
query. Figure 21, figure 22, figure 23 and figure 24
shows the comparison result.

In case of Pattern Query

Proposition 1. RPqcoordinate-based = (11)

Proposition 2. RPqextensible = (12)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++× ∑ ∏

= =

−
k

m

m

j

k k
1 1

2 122

)13(2 2 −×− kk

1log
1

1
2 +∑

−

=

k

n

nc

∑
−

=

1

1 2
*

k

n

n cc

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++× ∑ ∏

= =

−
k

m

m

j

k k
1 1

2 122

)13(2 2 −×− kk

Fig. 21 Evaluation of pattern query according to
increase the number of child nodes

Fig. 22 Evaluation of pattern query according to
increase the depth

In case of Direct Containment Query

Proposition 3. RCqcoordinate-based = (13)

Proposition 4. RCqextensible = (14)

Fig. 23 Evaluation of direct containment query
according to increase query length

Fig. 24 Evaluation of direct containment query
according to increase depth

7 Conclusion

We proposed an extensible index technique to
express position information between nodes in a XML
document based on XML Schema. It is an efficient
index technique that simplifies the comparative object

applied to a search query and minimizes the
reconstruction of index structure by update operation.

In addition, proposed index technique keeps to
support not only conventional direct containment
query, indirect containment query, compete
containment query, proximity query but also specific
pattern query by simple SQL statement widely used in
general.

Moreover, the technique can minimize
reconfiguration process of index structure by update
operation, and can simplify comparison target that is
applied on search query. It improves performance
better than conventional coordinated-based index
techniques.

References:
[1] T. Bray, et al, “Extensible Markup Language (XML) 1.0

(Second Edition),”
http://www.w3.org/TR/2000/REC-xml-20001006

[2] ISO, “Information Processing - Text and Office System
- Standard Generalized Markup Language (SGML),”
ISO/IEC 8879, Oct. 15, 1986.

[3] R. Davis, T. Dao, J. Thom, J. Zobel, "Indexing
documents for queries on structure, content and
attributes," DMIB'97, Nov. 1997.

[4] C. Clarke, G. Cormack, F. Burkowski, "An algebra for
structured text search and a framework for its
implementation," The Computer Journal, 1995.

[5] Jong P. Yoon, Vijay Reghavan, Venu Chakilan,
“BitCube: a three-dimensional bitmap indexing for
XML documents,” Proceedings, Thirteenth
International Conference on Scientific ans Statistical
Database Management (SDBM’2001), July 2001.

[6] D. Kha, M. Yoshikawa, S. Uemura, "An XML indexing
structure with relative region coordinate," ICDE'2001,
April 2001.

[7] C. Chung, J. Min, K. Shim, “APEX: An Adaptive Path
Index for XML Data”, In Proceedings of the ACM
SIGMOD International Conference on the Management
of Data, 2002:121-132

[8] C. Cheng, J. Naughton, D. DeWitt, Q.Luo, and G.
Lohman, "On supporting containment queries in
relational database management systems," ACM
SIGMOD, 2001.

[9] C. Seu, S. Lee, H. Kim, "An Efficient Inverted Index
Technique based on RDBMS for XML Documents",
KICS:Database Vol 30. No 1. 2003.2

[10] J. Song, W. Kim, "Extensible index technique for
storing and retrieving XML documents," CIT’2004, pp.
280-287, Sep., 2004.

∑
−

=

−
1

1
)1(*

2
*

k

n

n lcc

)32(*}1)(log
1

1
2 −+∑

−

=

lc
k

n

n

