Complexity Analysis To Software Defect System

ZHANG Kai
Computer Department

Zhongnan University of Economics and Law
No.114, Wu Luo Road, Wuhan 430064

P.R.China
Tel: 86-27-88077521, Fax: 86-27-88061125
Abstract: "Complexity will be the science of the 21st Century." This paper will focus on the law of software defect growth and number of software defect. And it also gives the explanation of relation between software defects and environment and of environmental influence on software defects by the methods of system science, chaos-fractals theory, dissipative structures and evolution theory. The author believes that the software defect system may be in one of the three ways, stable development condition, periodic change condition, and paroxysmal chaos condition. And he also comes to the conclusion of early quality control being important from the angle of chaos-fractals and evolutionary theory.

Key Words: Software defect, Evolution, Chaos, Fractals, Dissipative structure, Ecology, Environmental factors, Limiting factors, Eco-factors
1 Introduction (
Prof Stephen Hawking has said, "Complexity will be the science of the 21st Century."[1] Software defect system is a complex one and its behaviors are of quite complexity. These are the inevitable outcomes of software evolution. For the reason, the discussion or research to the problem must be made from the point of view of complexity.
The simulation of living beings becomes a research trend, which may make some new methods out. Being greatly inspired by nature, some researchers simulated the process of living beings evolution to resolve the actual problems and originated a new field of study, evolutionary computation. The ecological research is the new ideas that can help us understand our environment. [2]

As a better tool, recently, many researchers have achieved good results with the aid of chaotic fractal theory as a part of complexity science. The researched results mainly were in the field of graphics and circuit, but some start to explore the issue of software quality by the method of chaotic theory [3] [4]. The two papers gave exploration for the prediction of software failure by the time series method of chaotic theory.

This paper is the theoretic exploration of the relation between software defects and environment and of environmental influence on software defects. And it is divided into four major sections. Section one opens with introduction. The second section is the related concepts. In Section three, the author will analyze of the ecological relation of both software defects and environment, and explain the chaotic characteristics and fractal growing ways of software defect system. And the summary and conclusion is given in the last section.
2 Ecosystem And Population

2.1 Ecosystem [5][6]
Ecosystem is an organizational environment including interactive parts which may be organisms or non-organisms. The system is a feedback cycle all of its parts interact to achieve a certain level of self-control.

Any organism must live in some environment, comprising various factors called environmental factors, and be closely related with the environment and in interaction with it. Anyone of environmental factors may be called eco-factor if it can make a great impact on an organism. There is the complicated relation between organism and its environment. Anyone of eco-factors can product an impact on an organism, but not all of them has the equal importance on it in some time. The most important ones among them are called limiting factors, which can make a tolerance of the organism over the critical parameter of maximum or minimum so that it may be harmed or die.

The position and influence of an organism population in an ecosystem often change because of the complicated interaction between the organism and its environment. In a biosphere, human being is such a population who has the greatest and strongest influence over the other. He is reforming the biosphere according to his interest and profit while he will kill old species and create new ones.

2.2 Population Increase Rate [5][6][7]
First of all, the section will introduce several often-seen concepts in order easily to read the following contents. A population is a set of organism in a given area, and population increase rate is the ratio of organism number increasing or reducing to time. And Population density is the number of organisms per unit area.

In addition, in real environment, ecologists still discovered that the actual curve often like one of the two pictures in Figure 1, which often conform to objective reality.

[image: image1.wmf]

(a)

(b)

Figure 1. S

-

shape curve in real

environment

N

t

t

N

The biologist Robert May published his Chaotic Logistic Population Model in the Nature in 1976. Mathematically this can be written as

[image: image2.wmf])

1

(

4

1

n

n

n

x

x

x

-

=

+

m

 (1)

where
[image: image3.wmf]]

1

,

0

[

Î

m

 and
[image: image4.wmf]]

1

,

0

[

Î

x

. It gave the dynamic mathematical relation of predator-prey for common resource.

2.3 Dissipative Structures [8]
A dissipative structure is an open system which is operating far from thermodynamic equilibrium within an environment that exchanges energy, matter or entropy. A dissipative system is characterized by the spontaneous appearance of a complex, sometimes chaotic, structure. The term dissipative structures was coined by Ilya Prigogine.
3、Analysis of Software Defect Growth
3.1 Software Ecosystem
Software ecosystem is an organizational environment including interactive parts in it that may be software or non- software. It also is a feedback cycle or chain all the parts in which interact to achieve a certain level of self-control.

Software must live in an environment and be closely related with the environment and in interaction with it, which comprises various factors called environmental factors. Anyone of environmental factors may be called eco-factor if it can make a great impact on software. There is the complicated relation between software and its environment. Anyone of eco-factors may product a great impact on the software, but not all of them have the equal importance on it. The most important ones among them are called limiting factors, which can make the tolerance of the software over the critical parameter of maximum or minimum so that it may be harmed or die.

The position and influence of a software population in a software ecosystem often change because of the complicated relation between software and its environment. And the relation consists of negative-interaction and positive-interaction. The former is the interactive struggle of software defect populations for obtaining living resources while the later is the cooperation between two software defects, which is called symbiotic relationship including so-called commensalisms (one obtaining profit but another not being harmed) and mutualisms (both obtaining profit).

It is sure that software defects are disturbed by external factors, owing to the fact that growth of software defects is the developing process of being limited and diffused. And the greater external pressure is, the less software defects are. Concretely speaking, there may be less software defects distributed in the area if there is greater pressure from external environment; but there may be more software defects distributed in the area if there is smaller pressure from external environment. All in all, the existence of external resistance will make the total number decrease.

In a software biosphere, man is such a controller who has the greatest and strongest influence over anyone of the others. He is a killer and contriver of software defects and he also is the eco-factor and limiting one. During software process, man is predator and software defect is prey.
The relation between reviewers and software defects is a negative-positive feedback cycle, and the results of their interaction may make the software defects decrease. Software defects drop if reviewers increase, and vice versa. The relation will trend a stable condition or come to a relative balance through a series of fighting process. But such a peace may be broken at any time for a new factor except them in the environment changes. All in all, this is a stable-unstable cycle.

3.3Chaotic analysis of software defects
Software defect system also is a dissipative structure because it is open and far from equilibrium with energy or matter exchanges, meanwhile the system evolves from low-grade to high-grade. This is the process of software product developed and software defects evolved. The software process development will stop and software defect evolution also is over as soon as the dissipative structure disappears during the process.

The process of everything increasing or growing is the one of the negative-positive feedback between the internally growing force and externally limiting environment. At beginning, environmental resistance is small while internal force is weak as well, so growth is slow. With greater interaction and more negative-positive feedback, rapid growth starts; in the meantime environmental resistance become so greater and greater that growth is decelerated but not stop. The entire growing process has to stop if the growing process accumulates to some level and condition does not maintain the further increase. At the time, the thing may be near its end. Generally speaking, the ending ways have three ones including: from-fluctuation-to-stable-change, from-fluctuation-to-periodic-change, or turning-to-chaotic-condition [7][8].

The process of software defect growing also is the one of the negative-positive feedback between internally growing force and externally limiting environment. But the author believes that the entire process may be one of the above three ways. To analyze the detail, software process may be divided into the six phases, which are the preparation one from
[image: image5.wmf]1

x

 to
[image: image6.wmf]2

x

, the requirement from
[image: image7.wmf]2

x

to
[image: image8.wmf]3

x

, the design from
[image: image9.wmf]3

x

 to
[image: image10.wmf]4

x

, the coding from
[image: image11.wmf]4

x

 to
[image: image12.wmf]5

x

, the testing from
[image: image13.wmf]5

x

 to
[image: image14.wmf]6

x

, and the maintenance from
[image: image15.wmf]6

x

 to
[image: image16.wmf]7

x

.

[image: image17.wmf]

N

t

1

x

2

x

3

x

4

x

5

x

6

x

7

x

Figure 2. Paroxysmal Chaos

Through the careful observation of the entire software process from the many experiments the author joined in, it can be discovered that the processes between two phases often are in the stable-development or periodic-change condition, and the processes of transitional phases of two phases mostly are in chaotic-condition. Theses phenomena often exist in software process. It may be known from the above analysis that software defect increase may be paroxysmal chaos shown in Figure 2. At the time, the formula (1) can be used. Or the formula (1) cannot be employed to non-chaotic-condition.

The intervals of the chaotic-state are
[image: image18.wmf])

,

(

21

1

1

a

x

x

+

,
[image: image19.wmf])

,

(

31

2

22

2

a

x

a

x

+

-

,
[image: image20.wmf])

,

(

41

3

32

3

a

x

a

x

+

+

,
[image: image21.wmf])

,

(

51

4

42

4

a

x

a

x

+

+

,
[image: image22.wmf])

,

(

61

5

52

5

a

x

a

x

+

+

,
[image: image23.wmf])

,

(

71

6

62

6

a

x

a

x

+

+

 and
[image: image24.wmf])

,

(

7

72

7

x

a

x

+

 where
[image: image25.wmf]ij

a

is a small integer. And the intervals of stable state or periodic-change are
[image: image26.wmf])

,

(

22

2

21

1

a

x

a

x

-

+

,
[image: image27.wmf])

,

(

32

3

31

2

a

x

a

x

-

+

,
[image: image28.wmf])

,

(

42

4

41

3

a

x

a

x

-

+

,
[image: image29.wmf])

,

(

52

5

51

4

a

x

a

x

-

+

,
[image: image30.wmf])

,

(

62

6

61

5

a

x

a

x

-

+

 and
[image: image31.wmf])

,

(

72

7

71

6

a

x

a

x

-

+

.

Why is the software defects system in one condition of the above three ways? Here are the explanations of emerging paroxysmal chaos, stable development and periodic change. During the beginning or ending time of a phase, software defect system may in the condition of not-control, disorder and confusion due to replacement or weakness of management, change and irregularity of work style and production mode, and this is the cause of the chaotic condition. At the beginning of a project, weak management, not-norms of behaviors and so on will make quite a few software defects out and dense, and anyone of small changes may produce the great impact on the defect system because the system is sensitive to initial values from external environment. The phenomenon often may emerge between the end of preparation phase and the beginning of requirement one. The same phenomenon may do between the two phases similarly. However, there is the probability to emerge, stable development or periodic change, as soon as the defect system enters the regular trace. The work style or production mode is the key of which one emerges. It is the periodic change if the process of software development needs the iterated improvements. Or it is the stable development if software development only needs a process to reach the set goal.

3.3 Reasons of software defect growing
During development, software users’ requirement will be divided into several parts and the parts will be done further till not. Through the several times iteration，a tree structure of software requirement will be formed. In the light of the fractal theory, man’s behaviors are similar, hence the big tree branches also are similar with the small ones, and so software structure is fractal structure. In the meantime, software defects also will be bifurcated with the division of software design. Similarly, the tree branches of software defects are the fractal structure as well. Generally, Software functions are subdivided to a certain level, while software defects are led to the level, but the software defects grow restrictedly due to the external pressure. Accordingly, the number of software defects and software bifurcation will be geared to the external pressure and surroundings.

Similarly to the six phases of software development, software defects may be classified into six kinds as shown in Figure 3. Bottom-to-top is a process from requirement to maintenance, and left-to-right is the six kinds, which are the defects of requirement, system design, detail design, programming, testing and maintenance, where
[image: image32.wmf])

(

1

1

11

n

i

R

R

R

L

L

 is all defects in requirement,
[image: image33.wmf])

(

2

2

12

n

i

S

S

S

L

L

 is all defects (including requirement phase, namely, defect sum of two phases) in system design,
[image: image34.wmf])

(

3

3

13

n

i

D

D

D

L

L

 is all defects (including former two phases, namely, defect sum of three phases) in detail design,
[image: image35.wmf])

(

4

4

14

n

i

P

P

P

L

L

 is all defects (including former three phases) in programming,
[image: image36.wmf])

(

5

5

15

n

i

T

T

T

L

L

 is all defects (including former four phases) in detail design,
[image: image37.wmf])

(

6

6

16

n

i

M

M

M

L

L

 is all defects (including former five phases) in maintenance. According to the analysis above, it is easily concluded that the sum of all software defects in requirement is larger than the sum in system design. Similarly, that in system design is larger than that in detail design. The rest is deduced from these.

Software defect increase has two ways, sexual propagation and asexual one. The former is the complicated combination of two defects and their children are discovered hard in software so that they are killed uneasily. The later is a process of self-decomposition that inherits all nature of mother, and all of children have the same nature. All could be found and killed quite easily as soon as one defect was discovered in the software.

It also is seen in Figure 3 that the earlier software defects are produced, the larger the number and influence of software defects are. Except for the above results, we can also come to a conclusion that the number of software defects increase by the exponential way, not multiple way. Finally, the conclusion can be given of that a defect is eliminated or rectified during the earlier phases is equal to that more defects are done. In fact, this conclusion is very similar to the two former conclusions of software engineering and chaotic theory [11]. The result of software engineering is that the costing of correcting the defects in the late phase is as several times as that in the early phase. And the result of chaotic theory is that a chaotic system is sensitive to an initial value. Therefore, if software system of chaotic characteristics can be disturbed or managed in the early phases, the system may develop to achieve the user’s goal in accordance with the interests and desires of developers.

3.4 Experiments of software defect control

The first experiment was to develop the multimedia teaching software, Database Principle and Its Application, with control, but the second experiment of developing Computer Foundation and Its Application not control. The recorded data filled in Table 1 about the software defects in the two experiments indicate that there is totally different between the two experiment results. The defect total of the second software is 42 times as much as that of the first one. It implies whether the software system is controlled will exert the significant impact over the software process control.
The experimental results indicate that there is the great difference between control and not-control to software process and the great impact on software defects from management, environment, and improvement.

4、Summary and Conclusion
Ecosystem is the system formed by the interaction of a community of organisms with their physical environment system, in which there are the environmental factors, eco-factors, and limiting factors.
Software defect system is a dissipative structure, which needs to get energy or matter from external environment so that it can develop and evolve. The process of software defect growing is the one of the negative-positive feedback between internally growing force and externally limiting environment. The entire process may be one of the three ways, stable development condition, periodic change condition, and paroxysmal chaos condition.

Software defect increase has two ways, sexual propagation and asexual one. The former is the complicated combination of two defects and their children are discovered hard so that they are killed uneasily. The later is a process of self-decomposition that inherits all nature of mother, and all of children have the same nature. All could be found and killed quite easily as soon as one defect was discovered.

Early quality control is important from the angle of chaos-fractals and evolutionary theory and the conclusion was obtained in software engineering. The experimental results show that the control, especially early control, to software process produces the great impact on the number of software defects. All of these indicate that the conclusion of this paper is correct.

Reference

[1] http://complexity.orcon.net.nz/history.html
[2] Wang Zheng-Zhi, Bo Tao, Evolutionary Computation, National University of Defense Technology Press, Nov. 2000, (in Chinese).

[3] Zhou Fengzhong, Li Chuan-Xian, A Chaotic Model for Software Reliability, Chinese Journal of Computers, 24(3), (2001), 281-291(in Chinese).

[4] Voas, Jeffrey, Can chaotic methods improve software quality predictions? IEEE Software v 17 n 5 Sep 2000. 20-22
[5] Sara Stein, The Evolution Book, Workman Publishing; September 1, 1986
[6] Stephen Webster, The Kingfisher book of evolution, New York : Kingfisher, 2000.
[7] May, R.M. [1976], "Simple mathematical models with very complicated dynamics", Nature 261, 459-467.
[8] Hazime Mori Yoshiki Kuramoto G. C. Paquette, Dissipative Structures and Chaos, Springer-Verlag New York, LLC, June 1, 2001
[9] Liu Hong, On the spontaneous fractal growth in science Evolution，Studies in Science of Science, 1998, 12:19-24 (in Chinese).

[10] Liu Hong, Li Biqiang, Research and application of Fractals in Natural growth Process, Science and Technology Review, 1996, 10:21-24(in Chinese).

[11] ZHANG Kai, XIONG Qian-xing, A CONTROL PROCESS DESIGN FOR SOFTWARE QUALITY BY CHAOTIC-FRACTAL, Proceedings of The 23th IASTED International Conference on Modelling, Identification, and Control, Feb. 23-25, 2004, Grindelwald, Switzerland
[12] Gleick, James, Chaos : making a new science, Viking, 1987
[13] Gregory L. Baker and Jerry P. Gollub. Chaotic dynamics : an introduction, 2nd ed.; Cambridge University Press, 1996.
[14] Crownover, Richard M. Introduction to fractals and chaos, Jones and Bartlett, c1995.
[15] Brian Kaye, Chaos & complexity: discovering the surprising patterns of science and technology, Weinheim ; New York : VCH, c1993

[image: image38.wmf]

Requirement

System Design

Detail Design

Program

Test

M

aintenance

M

-

line

P

-

line

T

-

line

D

-

line

S

-

line

R

-

line

R

11

…

R

i1

…

R

n1

 S

11

…

S

i1

…

S

n1

D

11

…

D

i1

…

D

n1

P

11

…

P

i1

…

P

n1

T

11

…

T

i1

…

T

n1

M

11

…

M

i1

…

M

n1

F

igure 3. Defect bifurcation kinds [11]

Table 1. The comparison of defects

	
	Feasibility
	Requirement
	Design
	Test
	Defect total

	The first
	9
	8
	9
	26
	52

	The second
	/
	/
	/
	2191
	2191

((The author wishes to express his most sincere appreciation to Prof. XIONG Qian-xing as his teacher in School of Computer, Wuhan University of Technology, who gave him advice and great help.

PAGE

_1160634909.unknown

_1160829852.doc

N

t

t

N

(b)

Figure 1. S-shape curve in real environment

_1164867672.unknown

_1167246603.unknown

_1167246610.unknown

_1160840617.doc
[image: image1.wmf]1

x

[image: image2.wmf]2

x

[image: image3.wmf]3

x

[image: image4.wmf]4

x

[image: image5.wmf]5

x

[image: image6.wmf]6

x

[image: image7.wmf]7

x

 � EMBED Equation.3 ��� � EMBED Equation.3 ��� � EMBED Equation.3 ��� � EMBED Equation.3 ��� � EMBED Equation.3 ��� � EMBED Equation.3 ��� � EMBED Equation.3 ���

Figure 2. Paroxysmal Chaos

t

N

_1160632478.unknown

_1160632520.unknown

_1160632573.unknown

_1160632593.unknown

_1160632544.unknown

_1160632507.unknown

_1160632390.unknown

_1160840946.doc

Requirement

System Design

Detail Design

Program

Test

Figure 3. Defect bifurcation kinds [11]

R11…Ri1…Rn1 S11…Si1…Sn1 D11…Di1…Dn1 P11…Pi1…Pn1 T11…Ti1…Tn1 M11…Mi1…Mn1

Maintenance

P-line

D-line

T-line

M-line

S-line

R-line

_1160831544.unknown

_1160635021.unknown

_1160635178.unknown

_1160635494.unknown

_1160635913.unknown

_1160635920.unknown

_1160635739.unknown

_1160635415.unknown

_1160635026.unknown

_1160634934.unknown

_1160634964.unknown

_1160634917.unknown

_1160632520.unknown

_1160632573.unknown

_1160632593.unknown

_1160634786.unknown

_1160632544.unknown

_1129129659.unknown

_1160632478.unknown

_1160632507.unknown

_1129129691.unknown

_1160632390.unknown

_1129129674.unknown

_1129129634.unknown

_1129129649.unknown

_1128587787.unknown

