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Abstract: - Model transformation methods are vital in several applications such as OMG’s Model-Driven 
Architecture and Visual Model Processors. This paper contributes a metamodel-based rewriting rule 
representation similar to the UML class diagram and the supporting algorithms to determine valid instances of 
the patterns. The proposed algorithms are illustrated by specific examples throughout the paper. The results 
turn out to be useful not only for UML class diagram-based rewriting rule formulation patterns, but it provides 
a method for checking valid instantiation of UML class diagrams in modeling environments. 
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1 Introduction 
Model transformation systems are a highly 
researched field of applied computer science. For 
instance the Object Management Group’s (OMG) 
Model-Driven Architecture (MDA) standard [1] 
strongly builds on model compilers, which 
automatically create a platform specific model 
(PSM) from the platform independent models (PIM) 
specified by the development team. Model 
transformation systems can serve as a basis for 
model compilers. Another applications are Visual 
Model Processors (VMPs)[2], which can provide a 
more maintainable solution for processing system 
models than their traversing counterparts. 
To create a representation for the transformation 
steps it is reasonable to use a well-known visual 
formalism like the UML class diagram [3][4]. 
This paper is organized as follows: Section 2 
enumerates the achievements contributed to the 
results included this paper, Section 3 supplies 
detailed information about a UML class diagram-
based rewriting rule formalism. Section 4 provides 
the theoretical and algorithmic background to 
determine the allowed instantiations, and in Section 
5 conclusions are drawn. 
 
2 Backgrounds and Related Work 
According to the Unified Modeling Language 
(UML) standard [3], the binary association and the 
multiplicity sets assigned to the association ends are 
interpreted as follows: 
The integer set s1 (Fig. 1) contains the valid number 
of links (association instances on the object 

diagram) originated from A type objects to a B type 
object. 
 

Fig.  1. Association with multiplicity sets 
 
The integer set s2 is conceived symmetrically. To 
rephrase this in terms of graph theory, one can say 
that the allowed valencies (degrees) of an object 
vertex of type A concerning the links connected to 
object vertices of type B are denoted on the B side of 
the association that resides between classes A and B.
In the previous statement we assumed that only one 
association exist between A and B. If there are more 
than one associations between A and B (this 
structure requires association classes or role names 
to make distinction between the associations), the 
same rule holds for each association and their 
instantiating links, respectively. 
According to the UML standard there is another 
property of the association end which affects the 
instantiation of an association, namely, the Boolean 
navigable property. If an association end is 
navigable (e.g. the B side of the diagram in Fig. 1), 
the instances of the class on the other end (in our 
example the instances of A) can access the instances 
of the class where the association end is navigable 
(instances of class B). 
Since the UML class diagram is mainly used to 
generate programming language code, navigability 
means that the given side of the association is 
simply ignored by the generator, that is, no code will 



be generated into the class residing on the opposite 
side for the association end (which is usually a 
variable named after role name, and with the type of 
an array or with a single type, depending on the 
multiplicity values). The UML class diagram can be 
regarded as the metamodel of the object diagram, 
thus we use the two expressions interchangeably in 
the context of this paper. 
Graph rewriting is a sequence of rule applications. A 
rule consists of two graphs: left hand side (LHS) and 
right hand side (RHS) graphs. The goal is to find an 
occurrence of LHS (a subgraph isomorphic to LHS) 
in the input graph, which is replaced with the RHS 
of the rule. As far as the rule firing is concerned the 
theory of double pushout approach (DPO) in 
algebraic graph rewriting [5] is applied: firstly only 
the intersection of LHS and RHS is kept in the input 
graph, other parts are removed, and then the rest of 
the RHS (RHS-(RHS∩LHS)) is glued to the input 
graph. In our metamodel-based case introduced in 
[6] the input graph is the model to be transformed, 
and the rules are metamodels: instead of finding an 
occurrence (isomorphic subgraph) a subgraph is 
found which instantiates LHS.  
As far as pattern languages for graph rewriting are 
concerned PROGRES [7] provides a constructs 
similar to multiplicities (cardinality assertions). 
The GReAT framework [8] is a transformation 
system for domain specific languages (DSL) built on 
metamodeling and graph rewriting concepts. It uses 
a proprietary notation and interpretation instead of 
instantiation between the rules expressed with 
metaelements and the match. 
Previous work has introduced a software package 
called Visual Modeling and Transformation System 
(VMTS) [2][9]. In this paper a technique is worked 
out, with the help of which we can apply UML class 
diagram elements (classes, associations, 
multiplicities) to create a pattern language for the 
LHS and the RHS part of the graph rewriting rules 
used in model transformation engine of VMTS. 
 
3 Motivation 
In case of a model transformation system the 
description language of the transformation steps is 
crucial from the users’ point of view. If the 
achievements elaborated in the previous sections can 
be turned into a representation which the developers 
are familiar with, it facilitates a powerful, easy-to-
learn transformation tool. UML class diagram is a 
popular and standard way of modeling the static 
structure of software systems under design. Our goal 
is to provide a rule specification feature in VMTS 
which is really similar in both concepts and 

notations to the mechanisms applied in UML class 
diagram.  
The main differences are as follows: (i) In rewriting 
rules we have to force a modified version of the 
identification condition [5]. The original 
identification condition states that different vertices 
in the production rule must not match the same 
vertex in the host graph. In case of metamodels, 
however, one metamodel element can have more 
objects instantiating it. The identification condition 
can be generalized such that the sets containing the 
instances of different pattern elements shall be 
disjoint. It implies that a metamodel element can 
appear more than one times as opposed to the UML 
class diagram. An intuitive example can be seen in 
Fig. 2. 
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Fig.  2. Example for the modified identity condition 
 
In Fig. 2 a pattern from the hierarchical data flow 
diagram flattening problem is depicted, which is 
elaborated in [6]. A Compound element (C) can 
contain Simple elements (S) to facilitate the 
hierarchical structure. Both C and S elements are 
connected to Ports (P). In order to flatten the 
diagram one should find the ports connected to a P
element and the C element containing the P element, 
and a port of another C element to short circuit 
them. After this step C elements can be removed. 
The rule needs two different C elements, with two 
totally different topological orientations: one 
contains an S element and a P element connected to 
an S element, the other one contains a P, and not 
necessarily an S component. Moreover our 
experience has shown that this is the intuitive 
interpretation of this construction as well. In 
addition it is easy to see that this interpretation is 
exactly what the modified identification condition 
ensures. Processing LHS containing elements 
benefiting from this modified identification 
condition can be processed easily: the classes 
appearing more then once are treated as different 
classes during the matching, and the disjoint 
property is always checked as the matching process 
proceeds. 
(ii) The other distinction is that the navigable 
property is not taken into account at all during the 
matching process, because the reachability has no 
semantic meaning in the context of matching. 
Consequently, each multiplicity value has to be 



valid, because it is always taken into consideration 
by the rewriting engine, and the instantiation are 
evaluated as if the navigable properties were set to 
true. 
To implement and process these class diagram-
based rules we have to determine what the possible 
instantiations of an UML class diagram are. 
This is not always simple, since there are valid UML 
patterns for which no valid instantiation exists (Fig. 
3) 

Fig 3.  UML class diagram with no valid instances 
 
Although this situation rarely occurs in case of UML 
modeling, where the multiplicities are mainly one of 
the values 1, 0..1,1..*, 0..*, considering a pattern 
language the other cases also have to be dealt with. 
The rest of this paper is devoted to this issue and the 
related algorithms. 
 
4 Contributions 
 
4.1 Properties of the instantiation 
 
As it was illustrated in the previous section not 
every class diagram can be instantiated. In this 
section we examine the valid instantiations related to 
the multiplicity values with respect to the case 
where multiplicity values consist of a nonzero 
integer element.  
 

Fig.  4.  A general bidirectional association with 
nonzero integer multiplicities 

 
Proposition 1. The class diagram depicted in Fig. 4 
can be instantiated by na’ objects of type A and nb’
objects of type B, where n is an arbitrary positive 
integer and  
 

b)GCD(a,
bb'

b)GCD(a,
aa'

=

=
(1) 

 
where GCD denotes the greatest common divisor. 
 
Proof: It follows from the UML class diagram 
semantics that each object of type A must have 
exactly b number of B type objects. Assume we 

have y number of A type object. Then by = z edges 
exist on the object level. Similarly, if x number of B
type objects exist, ax = z edges are set up (LCM 
denotes the least common multiple).  
 

a
b)nLCM(a,x

b)nLCM(a,ax
b)nLCM(a,byax

=

=
==

(2) 

 
Because of the symmetry of the model (Fig. 4): 
 

b
b)nLCM(a,y = (3) 

 
Using a well-known formula we can express the 
solution dependently on the other variable: 
 

b)GCD(a,
nay
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nbx

b)GCD(a,
abb)LCM(a,
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=

=

=

=

(4) 

 
Based on Proposition 1 an example can be created 
(Fig. 5): 

Fig.  5. Parallel links 
 
Although this is a construction that conforms to the 
UML standard [3], multiple edges, however, are not 
used in practical applications. If multiple edges are 
not allowed, as it is the case regarding the LHS 
rules, another proposition can be used. 
 
Proposition 2. If no multiple edges allowed for 
associations in the object diagram, the class diagram 
in Fig. 4 can be instantiated by na objects of type A 
and nb objects of type B, where n is an arbitrary 
positive integer. 
 
Proof. We use the x,y variables from the previous 
proof. As a first step an A node is taken and tied to b
number of different B type node to avoid multiple 



edges. It means that this step requires b number of B
type node to be available. We do not restrict the 
connection made during a particular step, but it 
always holds that in worst case the (ak+1)th step 
requires the availability of (k+1)b B type object 
(k=1,2,…,N), because the worst case does not use 
new B type object until it is necessary i.e. when all 
the already tied B type objects are exhausted. 
Consequently: 

xkbaks11)a(k ≤⇒≤≤+− ,
where s denotes the ordinal number of the current 
step. Each step uses and exhaust the connection 
facilities of exactly one A type object, hence ys = .

xkbaky11)a(k ≤⇒≤≤+− (5) 
Recall that because of the edge numbers  

byax = (6) 

a
bykbaky11)a(k ≤⇒≤≤+−

yakaky11)a(k ≤⇒≤≤+− ,

Then the only solution: 
yak = ,

And because of the symmetry: 
xbk = .

We do not consider k=0 as a solution, thus the 
proposition directly follows from the formulae 
above. Because this is a special case of the multiple 
edge version, if we do not simplify with the greatest 
common divisor, we obtain (1) given in Proposition 
1.  
 
4.2 Instantiating the model structure 
 
It is worth examining that which n values should be 
checked for a specific value a. It would be 
advantageous if we could formulate an upper bound 
for n to be examined, and we could decide whether 
it can be a part of the match. Unfortunately, in 
general such an upper bound cannot be given in all 
cases, further parts of the object graph has to be 
examined. 
Assume that ma number of A type object and mb 
number of B type are available. Examining na and 
nb objects it cannot be decided whether these 
objects form a valid instantiation if mn < .
We create an instance construct with a parameter n,
as it is depicted in Fig 6. The structure contains m
number of blocks, and each block contains a number 
of A type objects and b number of B type objects. As 
it follows from Proposition 2, a block can form a 
satisfying instantiation of the given class diagram. 

However, if an edge is removed from blocks, which 
are instances in themselves, each block will contain 
an A and a B type object able to accept an edge. 
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Fig.  6. An infinite construction for a class diagram 
which cannot be analyzed by blocks 

 
This edge is drawn from a free A type object of the 
nth block to the free B type object of the n+1th 
block, and in case of the mth block the first block is 
considered. Consequently, the threshold for 
examined n values can be at most 
 







b
B

a
A #,#min . (7) 

 
For computing the allowed numbers of the 
participating objects in whole instantiation model 
graph we consider a specific representation derived 
from the metamodel, which is referred to as 
Incidence Matrix with Multiplicity (IMM) in the 
sequel.   
 
Algorithm 1. CREATEIMM( )
1 Traverse the metamodel graph 
2 Take each edge je .

3 If the kv and lv are the vertices incident upon je ,

then set kjIMM to the kv side multiplicity and 

ljIMM  to the lv side multiplicity of je .

IMM can be considered as a short representation of 
the equations established for each node based on 



Proposition 2. In our example it can be written as 
follows: 

32

21

10

30

:
62:

3:
:

xxD
xxC

xxB
xxA

=
=
=

=

(8) 

Obviously, in the formula above all ix variables are 
nonzero integers. 



















1100
0620
0013
1001

Fig.  7. An example for creating IMM. 
 
To solve this sort of equations an elimination 
algorithm is proposed. The source code of the 
algorithm can be downloaded from [9]. 
 
Algorithm 2. ELIMINATION(IMM IMM)
1 for each j column index 

 2 r0=index of row with first nonzero element 
 3 r1=index of row with second nonzero element 
 4 if there is no r0 and r1 then break 

5 lcm=LCM(imm[r0,j],imm[r1,j]) 
 6 MultiplyRow(r0, lcm/imm[r0,j]) 
 7 MultiplyRow(r1, lcm/imm[r1,j]) 
 8 for each j2 column index 
 9 if imm[r0,j2]= = imm[r1,j2] then 
10         imm[r1,j2]=0 
11      else if imm[r0,j2]!=0 and imm[r1,j2]!=0 then 
12        Inconsistent parallel paths. No instantiation. 
13      else if imm[r1,j2]!=0 
14         imm[r0,j2]=imm[r1,j2]; 
15         imm[r1,j2]=0; 
16      end if 
17    end for 
18 end for 
19 rowlcm=LCM of the 0th row of imm 
20 for each j column index  
21    imm[0,j]=rowlcm/ imm[0,j] 
22 end for 

After the elimination the 0th row of the IMM 
contains a factor if for each edge ie . Each 

21,mm multiplicity on an edge ie must be multiplied 

by factor if . The number of the 1m side node can be 
kfm i1 , where k is an arbitrary nonzero integer and 

the cardinality of the other node can be computed 
similarly. An example for the elimination algorithm: 
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




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⇒


















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0620
0013
3003

,



















1100
0620
0000
3013

⇒



















1100
0620
0000
6026

,


















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6626

⇒

⇒
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







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


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0000
0000
6626

⇒(LCM=6),
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
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


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


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1131

⇒

1
1
3
1

3

2

1

0

=
=
=
=

x
x
x
x

⇒

nD
nC
nB
nA

1:
6:
3:
1:

As a second example we consider our introductory 
counterexample depicted in Fig. 3. 
 



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



13
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⇒ 








26
36
⇒Inconsistent equation. 

 
Taking another unsuccessful example it can be seen 
that a tool can recommend a correct, consistent 
multiplicity in special cases: 
 























00100
15000
01040
00152
70003

⇒…⇒























00000
315000
00000
00000

5615126024

⇒Inconsistent equation. 



Although this equation cannot be solved, one can 
offer a solution for the multiplicities in the last 
column: 

8
3

,...2,1,24)3,8(38

2

1

21

=
=

====

m
m

llLCMmm

Substituting the result into the original matrix: 
 




















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00152
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⇒…⇒
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




















00000
00000
00000
00000
2415126024

5 Conclusion 
This paper has proposed a metamodel-based 
formalism for rewriting rules used as model 
transformation steps in VMTS. An algorithm for 
determining the valid instantiations for nonzero 
integer multiplicity values has also been contributed. 
The provided algorithms can be easily extended to 
set multiplicities as well. (i) The zero multiplicity 
case should be treated differently, because it implies 
no links connected to the object of the given type. 
(ii) For set multiplicities (e. g. intervals), all pairs 
from the Cartesian product of the two multiplicity 
sets have to be examined for set values with the 
IMM algorithm. 
However this method has been developed for 
metamodel-based rewriting rules, it can be used by 
modeling environments to check whether a valid 

instantiation exists for a specified class diagram, 
when the navigable properties are turned on. 
Future work includes the examination of the case 
when navigable properties do not hold, and reducing 
the search space with ruling out the invalid 
instantiations in matching part of the rule firing 
algorithm. 
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