
A UML Class Diagram-Based Pattern Language for Model
Transformation Systems

TIHAMÉR LEVENDOVSZKY, LÁSZLÓ LENGYEL, HASSAN CHARAF

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Goldmann Gy. tér 3, Budapest, H-1111
HUNGARY

Abstract: - Model transformation methods are vital in several applications such as OMG’s Model-Driven
Architecture and Visual Model Processors. This paper contributes a metamodel-based rewriting rule
representation similar to the UML class diagram and the supporting algorithms to determine valid instances of
the patterns. The proposed algorithms are illustrated by specific examples throughout the paper. The results
turn out to be useful not only for UML class diagram-based rewriting rule formulation patterns, but it provides
a method for checking valid instantiation of UML class diagrams in modeling environments.

Key-Words: instantiation, metamodel-based model transformation, graph rewriting, UML class diagram,
association multiplicity

1 Introduction
Model transformation systems are a highly
researched field of applied computer science. For
instance the Object Management Group’s (OMG)
Model-Driven Architecture (MDA) standard [1]
strongly builds on model compilers, which
automatically create a platform specific model
(PSM) from the platform independent models (PIM)
specified by the development team. Model
transformation systems can serve as a basis for
model compilers. Another applications are Visual
Model Processors (VMPs)[2], which can provide a
more maintainable solution for processing system
models than their traversing counterparts.
To create a representation for the transformation
steps it is reasonable to use a well-known visual
formalism like the UML class diagram [3][4].
This paper is organized as follows: Section 2
enumerates the achievements contributed to the
results included this paper, Section 3 supplies
detailed information about a UML class diagram-
based rewriting rule formalism. Section 4 provides
the theoretical and algorithmic background to
determine the allowed instantiations, and in Section
5 conclusions are drawn.

2 Backgrounds and Related Work
According to the Unified Modeling Language
(UML) standard [3], the binary association and the
multiplicity sets assigned to the association ends are
interpreted as follows:
The integer set s1 (Fig. 1) contains the valid number
of links (association instances on the object

diagram) originated from A type objects to a B type
object.

Fig. 1. Association with multiplicity sets

The integer set s2 is conceived symmetrically. To
rephrase this in terms of graph theory, one can say
that the allowed valencies (degrees) of an object
vertex of type A concerning the links connected to
object vertices of type B are denoted on the B side of
the association that resides between classes A and B.
In the previous statement we assumed that only one
association exist between A and B. If there are more
than one associations between A and B (this
structure requires association classes or role names
to make distinction between the associations), the
same rule holds for each association and their
instantiating links, respectively.
According to the UML standard there is another
property of the association end which affects the
instantiation of an association, namely, the Boolean
navigable property. If an association end is
navigable (e.g. the B side of the diagram in Fig. 1),
the instances of the class on the other end (in our
example the instances of A) can access the instances
of the class where the association end is navigable
(instances of class B).
Since the UML class diagram is mainly used to
generate programming language code, navigability
means that the given side of the association is
simply ignored by the generator, that is, no code will

be generated into the class residing on the opposite
side for the association end (which is usually a
variable named after role name, and with the type of
an array or with a single type, depending on the
multiplicity values). The UML class diagram can be
regarded as the metamodel of the object diagram,
thus we use the two expressions interchangeably in
the context of this paper.
Graph rewriting is a sequence of rule applications. A
rule consists of two graphs: left hand side (LHS) and
right hand side (RHS) graphs. The goal is to find an
occurrence of LHS (a subgraph isomorphic to LHS)
in the input graph, which is replaced with the RHS
of the rule. As far as the rule firing is concerned the
theory of double pushout approach (DPO) in
algebraic graph rewriting [5] is applied: firstly only
the intersection of LHS and RHS is kept in the input
graph, other parts are removed, and then the rest of
the RHS (RHS-(RHS∩LHS)) is glued to the input
graph. In our metamodel-based case introduced in
[6] the input graph is the model to be transformed,
and the rules are metamodels: instead of finding an
occurrence (isomorphic subgraph) a subgraph is
found which instantiates LHS.
As far as pattern languages for graph rewriting are
concerned PROGRES [7] provides a constructs
similar to multiplicities (cardinality assertions).
The GReAT framework [8] is a transformation
system for domain specific languages (DSL) built on
metamodeling and graph rewriting concepts. It uses
a proprietary notation and interpretation instead of
instantiation between the rules expressed with
metaelements and the match.
Previous work has introduced a software package
called Visual Modeling and Transformation System
(VMTS) [2][9]. In this paper a technique is worked
out, with the help of which we can apply UML class
diagram elements (classes, associations,
multiplicities) to create a pattern language for the
LHS and the RHS part of the graph rewriting rules
used in model transformation engine of VMTS.

3 Motivation
In case of a model transformation system the
description language of the transformation steps is
crucial from the users’ point of view. If the
achievements elaborated in the previous sections can
be turned into a representation which the developers
are familiar with, it facilitates a powerful, easy-to-
learn transformation tool. UML class diagram is a
popular and standard way of modeling the static
structure of software systems under design. Our goal
is to provide a rule specification feature in VMTS
which is really similar in both concepts and

notations to the mechanisms applied in UML class
diagram.
The main differences are as follows: (i) In rewriting
rules we have to force a modified version of the
identification condition [5]. The original
identification condition states that different vertices
in the production rule must not match the same
vertex in the host graph. In case of metamodels,
however, one metamodel element can have more
objects instantiating it. The identification condition
can be generalized such that the sets containing the
instances of different pattern elements shall be
disjoint. It implies that a metamodel element can
appear more than one times as opposed to the UML
class diagram. An intuitive example can be seen in
Fig. 2.

C

S P P

C

* *
*

*
*

Fig. 2. Example for the modified identity condition

In Fig. 2 a pattern from the hierarchical data flow
diagram flattening problem is depicted, which is
elaborated in [6]. A Compound element (C) can
contain Simple elements (S) to facilitate the
hierarchical structure. Both C and S elements are
connected to Ports (P). In order to flatten the
diagram one should find the ports connected to a P
element and the C element containing the P element,
and a port of another C element to short circuit
them. After this step C elements can be removed.
The rule needs two different C elements, with two
totally different topological orientations: one
contains an S element and a P element connected to
an S element, the other one contains a P, and not
necessarily an S component. Moreover our
experience has shown that this is the intuitive
interpretation of this construction as well. In
addition it is easy to see that this interpretation is
exactly what the modified identification condition
ensures. Processing LHS containing elements
benefiting from this modified identification
condition can be processed easily: the classes
appearing more then once are treated as different
classes during the matching, and the disjoint
property is always checked as the matching process
proceeds.
(ii) The other distinction is that the navigable
property is not taken into account at all during the
matching process, because the reachability has no
semantic meaning in the context of matching.
Consequently, each multiplicity value has to be

valid, because it is always taken into consideration
by the rewriting engine, and the instantiation are
evaluated as if the navigable properties were set to
true.
To implement and process these class diagram-
based rules we have to determine what the possible
instantiations of an UML class diagram are.
This is not always simple, since there are valid UML
patterns for which no valid instantiation exists (Fig.
3)

Fig 3. UML class diagram with no valid instances

Although this situation rarely occurs in case of UML
modeling, where the multiplicities are mainly one of
the values 1, 0..1,1..*, 0..*, considering a pattern
language the other cases also have to be dealt with.
The rest of this paper is devoted to this issue and the
related algorithms.

4 Contributions

4.1 Properties of the instantiation

As it was illustrated in the previous section not
every class diagram can be instantiated. In this
section we examine the valid instantiations related to
the multiplicity values with respect to the case
where multiplicity values consist of a nonzero
integer element.

Fig. 4. A general bidirectional association with
nonzero integer multiplicities

Proposition 1. The class diagram depicted in Fig. 4
can be instantiated by na’ objects of type A and nb’
objects of type B, where n is an arbitrary positive
integer and

b)GCD(a,
bb'

b)GCD(a,
aa'

=

=
(1)

where GCD denotes the greatest common divisor.

Proof: It follows from the UML class diagram
semantics that each object of type A must have
exactly b number of B type objects. Assume we

have y number of A type object. Then by = z edges
exist on the object level. Similarly, if x number of B
type objects exist, ax = z edges are set up (LCM
denotes the least common multiple).

a
b)nLCM(a,x

b)nLCM(a,ax
b)nLCM(a,byax

=

=
==

(2)

Because of the symmetry of the model (Fig. 4):

b
b)nLCM(a,y = (3)

Using a well-known formula we can express the
solution dependently on the other variable:

b)GCD(a,
nay

b)GCD(a,
nbx

b)GCD(a,
abb)LCM(a,

abb)b)LCM(a,GCD(a,

=

=

=

=

(4)

Based on Proposition 1 an example can be created
(Fig. 5):

Fig. 5. Parallel links

Although this is a construction that conforms to the
UML standard [3], multiple edges, however, are not
used in practical applications. If multiple edges are
not allowed, as it is the case regarding the LHS
rules, another proposition can be used.

Proposition 2. If no multiple edges allowed for
associations in the object diagram, the class diagram
in Fig. 4 can be instantiated by na objects of type A
and nb objects of type B, where n is an arbitrary
positive integer.

Proof. We use the x,y variables from the previous
proof. As a first step an A node is taken and tied to b
number of different B type node to avoid multiple

edges. It means that this step requires b number of B
type node to be available. We do not restrict the
connection made during a particular step, but it
always holds that in worst case the (ak+1)th step
requires the availability of (k+1)b B type object
(k=1,2,…,N), because the worst case does not use
new B type object until it is necessary i.e. when all
the already tied B type objects are exhausted.
Consequently:

xkbaks11)a(k ≤⇒≤≤+− ,
where s denotes the ordinal number of the current
step. Each step uses and exhaust the connection
facilities of exactly one A type object, hence ys = .

xkbaky11)a(k ≤⇒≤≤+− (5)
Recall that because of the edge numbers

byax = (6)

a
bykbaky11)a(k ≤⇒≤≤+−

yakaky11)a(k ≤⇒≤≤+− ,

Then the only solution:
yak = ,

And because of the symmetry:
xbk = .

We do not consider k=0 as a solution, thus the
proposition directly follows from the formulae
above. Because this is a special case of the multiple
edge version, if we do not simplify with the greatest
common divisor, we obtain (1) given in Proposition
1.

4.2 Instantiating the model structure

It is worth examining that which n values should be
checked for a specific value a. It would be
advantageous if we could formulate an upper bound
for n to be examined, and we could decide whether
it can be a part of the match. Unfortunately, in
general such an upper bound cannot be given in all
cases, further parts of the object graph has to be
examined.
Assume that ma number of A type object and mb
number of B type are available. Examining na and
nb objects it cannot be decided whether these
objects form a valid instantiation if mn < .
We create an instance construct with a parameter n,
as it is depicted in Fig 6. The structure contains m
number of blocks, and each block contains a number
of A type objects and b number of B type objects. As
it follows from Proposition 2, a block can form a
satisfying instantiation of the given class diagram.

However, if an edge is removed from blocks, which
are instances in themselves, each block will contain
an A and a B type object able to accept an edge.

A Bba

:A :B

:B:A
.
.
.

.

.

.

:A :B

:B:A
.
.
.

.

.

.

:A :B

:B:A
.
.
.

.

.

.

...

Fig. 6. An infinite construction for a class diagram
which cannot be analyzed by blocks

This edge is drawn from a free A type object of the
nth block to the free B type object of the n+1th
block, and in case of the mth block the first block is
considered. Consequently, the threshold for
examined n values can be at most







b
B

a
A #,#min . (7)

For computing the allowed numbers of the
participating objects in whole instantiation model
graph we consider a specific representation derived
from the metamodel, which is referred to as
Incidence Matrix with Multiplicity (IMM) in the
sequel.

Algorithm 1. CREATEIMM()
1 Traverse the metamodel graph
2 Take each edge je .

3 If the kv and lv are the vertices incident upon je ,

then set kjIMM to the kv side multiplicity and

ljIMM to the lv side multiplicity of je .

IMM can be considered as a short representation of
the equations established for each node based on

Proposition 2. In our example it can be written as
follows:

32

21

10

30

:
62:

3:
:

xxD
xxC

xxB
xxA

=
=
=

=

(8)

Obviously, in the formula above all ix variables are
nonzero integers.



















1100
0620
0013
1001

Fig. 7. An example for creating IMM.

To solve this sort of equations an elimination
algorithm is proposed. The source code of the
algorithm can be downloaded from [9].

Algorithm 2. ELIMINATION(IMM IMM)
1 for each j column index

 2 r0=index of row with first nonzero element
 3 r1=index of row with second nonzero element
 4 if there is no r0 and r1 then break

5 lcm=LCM(imm[r0,j],imm[r1,j])
 6 MultiplyRow(r0, lcm/imm[r0,j])
 7 MultiplyRow(r1, lcm/imm[r1,j])
 8 for each j2 column index
 9 if imm[r0,j2]= = imm[r1,j2] then
10 imm[r1,j2]=0
11 else if imm[r0,j2]!=0 and imm[r1,j2]!=0 then
12 Inconsistent parallel paths. No instantiation.
13 else if imm[r1,j2]!=0
14 imm[r0,j2]=imm[r1,j2];
15 imm[r1,j2]=0;
16 end if
17 end for
18 end for
19 rowlcm=LCM of the 0th row of imm
20 for each j column index
21 imm[0,j]=rowlcm/ imm[0,j]
22 end for

After the elimination the 0th row of the IMM
contains a factor if for each edge ie . Each

21,mm multiplicity on an edge ie must be multiplied

by factor if . The number of the 1m side node can be
kfm i1 , where k is an arbitrary nonzero integer and

the cardinality of the other node can be computed
similarly. An example for the elimination algorithm:



















1100
0620
0013
1001

⇒



















1100
0620
0013
3003

,



















1100
0620
0000
3013

⇒



















1100
0620
0000
6026

,



















1100
0000
0000
6626

⇒

⇒



















6600
0000
0000
6626

,



















0000
0000
0000
6626

⇒(LCM=6),



















0000
0000
0000
1131

⇒

1
1
3
1

3

2

1

0

=
=
=
=

x
x
x
x

⇒

nD
nC
nB
nA

1:
6:
3:
1:

As a second example we consider our introductory
counterexample depicted in Fig. 3.









13
12
⇒ 








26
36
⇒Inconsistent equation.

Taking another unsuccessful example it can be seen
that a tool can recommend a correct, consistent
multiplicity in special cases:























00100
15000
01040
00152
70003

⇒…⇒























00000
315000
00000
00000

5615126024

⇒Inconsistent equation.

Although this equation cannot be solved, one can
offer a solution for the multiplicities in the last
column:

8
3

,...2,1,24)3,8(38

2

1

21

=
=

====

m
m

llLCMmm

Substituting the result into the original matrix:























00100
85000
01040
00152
30003

⇒…⇒























00000
00000
00000
00000
2415126024

5 Conclusion
This paper has proposed a metamodel-based
formalism for rewriting rules used as model
transformation steps in VMTS. An algorithm for
determining the valid instantiations for nonzero
integer multiplicity values has also been contributed.
The provided algorithms can be easily extended to
set multiplicities as well. (i) The zero multiplicity
case should be treated differently, because it implies
no links connected to the object of the given type.
(ii) For set multiplicities (e. g. intervals), all pairs
from the Cartesian product of the two multiplicity
sets have to be examined for set values with the
IMM algorithm.
However this method has been developed for
metamodel-based rewriting rules, it can be used by
modeling environments to check whether a valid

instantiation exists for a specified class diagram,
when the navigable properties are turned on.
Future work includes the examination of the case
when navigable properties do not hold, and reducing
the search space with ruling out the invalid
instantiations in matching part of the rule firing
algorithm.

References:
[1] OMG Model Driven Architecture homepage,

www.omg.org/mda/
[2] T. Levendovszky, L. Lengyel, G. Mezei, H.

Charaf, A Systematic Approach to
Metamodeling Environments and Model
Transformation Systems in VMTS, Electronic
Notes in Theoretical Computer Science,
International Workshop on Graph-Based Tools
(GraBaTs) Rome, 2004

[3] Object Management Group, Unified Modeling
Language Specification, v1.5, www.uml.org
[4] T. Pender, T. Pender, UML Bible, Wiley, 2003
[5]Rozenberg (ed.) G., Handbook on Graph

Grammars and Computing by Graph
Transformation: Foundations, Vol.1. World
Scientific, Singapore, 1997.

[6]T. Levendovszky, G. Karsai, M. Maroti, A.
Ledeczi, H. Charaf, Model reuse with
metamodel-based transformations, Lecture Notes
in Computer Science - ICSR7, Austin, TX, April
18, 2002, pp. 166-178

[7] A. Zündorf, Graph Pattern Matching in
PROGRES, Graph Grammars and Their
Applications in Computer Science, LNCS 1073,
J. Cuny et al. (eds), Springer-Verlag, 1996, pp.
454-468.

[8] G. Karsai, A. Agrawal, F. Shi, On the Use of
Graph Transformation in the Formal
Specification of Model Interpreters, Journal of
Universal Computer Science, Special issue on
Formal Specification of CBS, 2003. pp. 1296-
1321

[9] The VMTS Homepage.
 http://avalon.aut.bme.hu/~tihamer/research/vmts/

