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Abstract: - One of the best-known problems in data mining is association rule mining. It requires very large 
computation and I/O traffic capacity, therefore several distributed and parallel association rule mining algorithms have 
been developed. However the association rule mining problem is NP complete, the execution time estimation of the 
algorithms can be very important, especially for load balancing or for capacity and resource planning. In this paper a 
novel execution time prediction method is introduced and evaluated on a PC cluster environment. The average relative 
error of this model is less than 10 percent.  
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1 Introduction 
The association rule mining (ARM) is very important 
task within the area of data mining [1]. Many algorithms 
were developed to find association rules, but the Apriori 
is the best-known [2]. The one of the main disadvantage 
of the Apriori algorithm is its I/O cost. Reference [3] 
introduces an algorithm for I/O cost cutting, but it has 
higher memory requirements.  
 Because of the complexity of the ARM task several 
parallel algorithms have been developed. The main part 
of the distributed algorithms is based on the Apriori 
algorithm. The count distribution (CD) -like algorithms 
[4] generate the smallest network traffic, because they 
send only their own counters to the other nodes. The data 
distribution (DD)- based algorithms [4] generate higher 
network traffic, because the nodes send not only their 
local counters, but their own database as well. There are 
some distributed algorithms, which are not based on 
Apriori, for instance [5] contributes such an algorithm. 
 The paper [6] shows a detailed analysis of the Apriori 
algorithm and it is concluded that the finding the 2 
frequent itemsets is the significant part of the execution 
time. The paper [7] introduces two modifications to 
avoid the bottlenecks in the Apriori algorithm. 
 The distributed algorithms were developed and 
evaluated in a supercomputer environment, but the PC 
cluster systems have several differences compared to 
traditional cluster systems. Therefore the contributed 
distributed association rule mining algorithms do not 
consider the data distribution cost and they begin the 
itemset counting after the data distribution phase. But the 
initial data distribution appears in case of PC cluster 
systems as the database usually is stored separately from 
the mining cluster.   

 Just few distributed association rule mining algorithm 
have been investigated in PC cluster environment. The 
paper [8] is concerned with the behaviour of HPA 
algorithm [9] in PC cluster environment. The node 
synchronization and possibility of different types of 
nodes can cause serious performance decrease in PC 
clusters. The PC cluster-based modification of CD and 
DD algorithms were discussed in [10]. The algorithm 
synchronization problem was examined in [11], and an 
asynchronous distributed algorithm was introduced in 
[12]. A PC cluster-optimised CD algorithm, which takes 
the initial data distribution into the consideration, was 
introduced in [13]. 
 The execution time estimation is an important 
objective in many applications, and this is especially true 
for long running, resource intensive, costly data mining 
algorithms. Performance prediction not only allows 
estimating the execution time, but also helps to adjust 
the parameters, to which the execution time is 
particularly sensitive. It allows balancing the associated 
costs and the expected benefits of the execution. Good 
estimation of resource requirements is also important in 
distributed systems, where the balance of the running 
time and the amount of processing resources can be fine 
tuned. 
 This paper is organized as follows: first of all the 
widely spread sequential ARM algorithms are described. 
Afterwards the basic distributed ARM algorithms are 
summarized. Then the detailed analysis of the count 
distribution based algorithms is described and a novel 
performance model of these algorithms is introduced. 
Finally the conclusion of the algorithms analysis is 
described. 
 



2 Problem Statement 
 
First we elaborate on some basic concepts of association 
rules using the formalism presented in [1]. Let 
I={i1,i2,…im} be set of literals, called items. Let 
D={t1,t2,…tn} be set of transactions, where each 
transaction t is a set of items such that t⊆ I. The itemset 
X has support s in the transaction set D if s% of 
transactions contains X, here we denote s= support(X). 
An association rule is an implication in the form of 
X�Y, where , ,  and X Y=X Y I⊆ ∅∩ . Each rule has 
two measures of value, support and confidence. The 
support of the rule X�Y is support(X∪Y). The 
confidence c of the rule X�Y in the transaction set D
means c% of transactions in D that contain X also 
contain Y, which can be written in ( ) ( )/c S X Y S X= ∪
form. The problem of mining association rules is to find 
all the rules that satisfy a user specified minimum 
support and minimum confidence. If support(X) is larger 
than a user defined minimum support (denoted here 
min_sup), then the itemset X is called large itemset.  
 The association rule mining can be decomposed into 
two subproblems: 

• Finding all of the large itemsets 
• Generating rules from these large itemsets 

 The second subproblem is much easier than the first 
one that is the reason why the ARM algorithms are 
different from each other only in the method handling 
the first subproblem. 
 

3 Basic Algorithms 
In this section some basic association rule mining 
algorithms are described. First the Apriori algorithm is 
introduced because it is the fundamental algorithm of the 
investigated distributed algorithms. Then three 
fundamental and referential algorithms are described: 
count distribution [4], data distribution [4] and hash-
based partition algorithm [14]. Table 1 contains the 
notations that are used in the detailed descriptions of the 
algorithms. 

 
k itemset An itemset having k items 
L Set of the frequent itemset 
Li Set of frequent i itemset 

Ci
Set of candidate i itemset 
(potentially frequent itemset) 

|A| Number of elements in set A 
Table 1. Notations in the sequential algorithms 

 
3.1   Apriori algorithm 
The Apriori algorithm [2] use the following theorem to 
reduce the search space: if an itemset is large then all of 
its subsets are large as well. This means it is possible to 

generate the potentially large i+1 itemset using large i 
itemset. Each subsets of candidate i+1 itemset must be 
large itemset. Hereby it is possible to find all large 
itemset using database scan repeatedly. During the ith 
database scan it counts the occurrence of the i itemset 
and by the end of the pass i, it generates the candidates, 
which contain i+1 item. Figure 1 shows the pseudo code 
of the Apriori algorithm. The main disadvantage of this 
algorithm is the multiple database scan. There are many 
solutions to reduce the number of database scans 
[2][3][5][14] 
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Fig. 1. Pseudo Code of the Apriori Algorithm 

 
3.2 Count distribution algorithm 
The count distribution algorithm [4] is a fundamental 
distributed association rule algorithm. The basic idea of 
this algorithm is that each of the nodes keeps large 
itemsets and counters of candidates locally, which are 
related to the whole database. These counters are 
maintained in accordance with the local dataset and 
incoming counter values. The nodes locally execute the 
Apriori algorithm and after reading through the local 
dataset they broadcast their own counters to the other 
nodes. Hence each of the nodes can generate new 
candidates on the basis of the global counter values.  
 
3.2 Data distribution algorithm 
Data distribution algorithm [4] offers a solution for the 
situation, when one of the nodes does not have enough 
memory for all of the candidates. In this case each of the 
nodes is responsible for only a part of the candidates. 
Each of the nodes counts the occurrence of its own 
candidates in the whole dataset. But all of the nodes have 
to broadcast their own local database to the other nodes. 
The disadvantage of the algorithm is that it generates 
very large network traffic, because it does not use any 
kind of optimisation to reduce the network traffic.  
 
3.3 Counting While Distributing algorithm 
The Counting While Distributing (CWD) [13]algorithm 
is based on count distribution algorithm but it uses a 
triangular matrix to find the 2 frequent itemset [7]. The 
other modification is that the traditional CD algorithm 



uses all-to-all broadcast mechanism to share own local 
counters when the nodes finished a database scan but in 
PC cluster environment the all to all broadcast can be 
very expensive. Therefore in this algorithm there is a 
coordinator node that collects the local counter value of 
the candidates and generates new candidates [10][12].  
 The traditional distributed association rule mining 
algorithms do not consider the initial database 
distribution cost hence they start the itemset counting 
after the data distribution. Due to the increased searching 
capability of triangular matrix representation of the 2 
itemset it is possible to count the 2 itemsets during the 
data distribution phase. Therefore after the initial data 
distribution the coordinator can immediately collect the 
counters of the 2 itemsets. This solution allows 
overlapping the initial data distribution and a significant 
part of the itemsets counting. 
 The asynchronous communication model can improve 
the overall efficiency of the cluster. The asynchronous 
communication model facilitates to overlap the 
communication and the data processing. During the 
initial data distribution the coordinator node creates 
small data fragments from the database and these are 
sent to the worker nodes. This fragmentation keeps the 
possibility to increase the efficiency of the data 
processing. Due to the asynchronous communication the 
worker nodes can process a data fragment while a new 
one is arriving through the network communication 
channel. 
 

4. Performance Model 
In order to develop an analytical model capturing the 
performance of the algorithms, a detailed investigation 
of its operation is needed. The main features of its 
execution time behaviour are to be determined. The 
investigated parameters are independent of each other, 
thus their effects on the response time can be observed 
separately. Execution time of each CD-based algorithm 
can be divided into four independent parts: 

• Initial data distribution 
• Itemset counting 
• Generating new candidates 
• Node to node communication 

 The aim of the performance modelling is to find a 
model that can estimate the execution time based on the 
data mining input parameters (data set, minimum 
support) and number of working nodes. This model 
independently takes into consideration the effects of data 
set parameters and the effects of mining and cluster 
parameters. Model parameters depend on the mining 
cluster, therefore the model parameters can be different 
in a different environment. Table 2 contains the 
notations that are used in the model 

 
4.1   Simulation environment 
 The algorithms are implemented in standard C++ 
using the pyramid [15] asynchronous message passing 
library on Windows XP platform. The simulation took 
place in the PC laboratory of the department using 11 
uniform PCs having an Intel Pentium IV processor of 
2.26 GHz, 512 MB RAM, and an Intel 82801DB 
PRO/100 VE network adapter of 100 Mbits. The nodes 
were connected through a switching hub of type 3Com 
SuperStack 4226T.  
 The datasets used by the algorithms are generated by 
IBM synthetic data generator [2]. The main parameters 
of the processed dataset are the number of the 
transactions (D), the average size of the transactions (T), 
and the average length of the maximal frequent itemsets 
(I).The parameter T varies from 10 to 25 by 5, the 
parameter I was in the range of 6 to 10. Earlier 
experiences have showed that there is a liner relationship 
between the response time and number of transaction 
[16] hence this parameter was fixed to 500.000. The 
maximal number of the items that can occur in a 
transaction was 1000. The CD and CWD algorithms 
were investigated and evaluated. The introduced figures 
are based on dataset T20I8D500K and the mining 
algorithm is CWD, but the behaviour of the identified 
parameters is similar to the introduced ones. 
 

p Number of nodes 
s Minimum support 
C Const parameter 
T Average size of the market baskets 
D Number of market baskets 

Table2. Notations of the model 
 
4.2 Cost of initial data distribution 
The initial data distribution is independent of minimum 
support; it depends on the size of the cluster. This cost 
can be estimated based on a parallel communication 
channel model [17]. Figure 2 shows the measured and 
estimated execution time of the initial data distribution. 
The parameter of the model can be identified with the 
least square method. Equation 1 shows the model, the 
identified parameters and the average relative error of 
the model. 
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Eq. 1. Model and parameters of the data distribution phase 

 
4.3 Cost of itemset counting 
 Basically the substantial part of the response time is 
the cost of itemset counting. Figure 3 and 4 show the 



itemset counting part of the execution time in function of 
minimum support and processing nodes. It is possible to 
realise that this time depends on minimum support 
exponentially. The scale up capability of the itemset 
counting is satisfactory as it depends on number of nodes 
in 1/p way. Equation 2 shows the model its parameters 
and the average relative error of the model. 
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Eq. 2. Model and parameters of the itemset counting phase 

4.4 Cost of new candidate generation 
The cost of new candidate generation is linearly 
dependent on the number of working nodes as the nodes 
has to collect the itemset counters from the other nodes. 

This cost is decreasing when the minimum support 
threshold is increasing; experimental results show that 
the new candidate generation cost can be estimated by a 
1/s3 function. Figure 5 and 6 show the response time and 
the estimator and equation 3 shows the model and its 
parameters. 
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Eq. 3 Model and parameters of the new candidate generation 

 
4.5 Cost of node to node communication 
The node to node communication cost depends on the 
architecture of the ARM algorithm. Due to the network 
communication capabilities the PC cluster based ARM 
algorithms have a centralized component, which collects 
the counter values and generates new candidates. Thus 
the network communication cost decreases and this cost 
can be estimated by a linear function.  
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Experimental results show that the node to node 
communication cost is independent of the minimum 
support threshold. This behaviour is illustrated in Figure 
7. Figure 8 shows the predicted and measured 



communication cost and Equation 4 shows the node to 
node communication model and its parameters. 
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Eq. 4 Model and parameters of the node to node communication 
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4.6 Execution time prediction 
The total execution time can be estimated by the sum of 
the previously introduced costs. Equation 5 shows the 
whole model. Figure 9 and 10 show the execution time 
prediction; Figure 11 shows the error surface of the 
prediction. The average relative error of the model is 
8.28%. 
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4.7 Effects of the dataset parameters 
The dataset parameters are independent of the data 
mining and cluster parameters. Thus their effects can be 
investigated independently. The model parameters 
introduced above can be identified on a sample database, 
and the effects of the dataset parameters can be 

identified by some other datasets. The substantial part of 
the response time is finding 2 itemsets therefore the 
execution time dependence on the average size of the 
transactions can be modelled with a polynomial of the 
degree two, except the data distribution cost, as it 
depends on only the size of the dataset. The parameters 
of the polynomial functions can be identified with the 
least square method. Equation 6, 7, 8 and 9 show the 
modified model. Average relative error of this model is 
9,87 percent.
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Eq. 6. Effects of dataset parameters on the data distribution time 
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5.    Conclusion 
In this paper basic distributed ARM algorithms have 
been investigated. A new performance model has been 
introduced, which keeps the possibility the execution 
time prediction of these algorithms. A simple model was 
provided to anticipate the performance of the algorithm, 
which describes well the behaviour of the data mining 
algorithm for a wide range of parameters. The main 
contribution of the paper was predicting the behaviour of 
a complex probability-based data mining algorithm in a 
relatively simple, closed numerical form allowing a good 
estimation of execution times. The model was validated 
by comparing the calculated and measured performance. 
Experimental results has showed that the suggested 
model is reasonably accurate in a wide domain having an 
average error below 10 percent. 
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