
Performance Evaluation of the Distributed Association Rule Mining
Algorithms

Ferenc Kovács and Sándor Juhász

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

1111, Budapest Goldmann György tér 3
HUNGARY

Abstract: - One of the best-known problems in data mining is association rule mining. It requires very large
computation and I/O traffic capacity, therefore several distributed and parallel association rule mining algorithms have
been developed. However the association rule mining problem is NP complete, the execution time estimation of the
algorithms can be very important, especially for load balancing or for capacity and resource planning. In this paper a
novel execution time prediction method is introduced and evaluated on a PC cluster environment. The average relative
error of this model is less than 10 percent.

Key-Words: - Data Mining, Association Rule, Distributed Algorithms, Performance Modelling

1 Introduction
The association rule mining (ARM) is very important
task within the area of data mining [1]. Many algorithms
were developed to find association rules, but the Apriori
is the best-known [2]. The one of the main disadvantage
of the Apriori algorithm is its I/O cost. Reference [3]
introduces an algorithm for I/O cost cutting, but it has
higher memory requirements.
 Because of the complexity of the ARM task several
parallel algorithms have been developed. The main part
of the distributed algorithms is based on the Apriori
algorithm. The count distribution (CD) -like algorithms
[4] generate the smallest network traffic, because they
send only their own counters to the other nodes. The data
distribution (DD)- based algorithms [4] generate higher
network traffic, because the nodes send not only their
local counters, but their own database as well. There are
some distributed algorithms, which are not based on
Apriori, for instance [5] contributes such an algorithm.
 The paper [6] shows a detailed analysis of the Apriori
algorithm and it is concluded that the finding the 2
frequent itemsets is the significant part of the execution
time. The paper [7] introduces two modifications to
avoid the bottlenecks in the Apriori algorithm.
 The distributed algorithms were developed and
evaluated in a supercomputer environment, but the PC
cluster systems have several differences compared to
traditional cluster systems. Therefore the contributed
distributed association rule mining algorithms do not
consider the data distribution cost and they begin the
itemset counting after the data distribution phase. But the
initial data distribution appears in case of PC cluster
systems as the database usually is stored separately from
the mining cluster.

 Just few distributed association rule mining algorithm
have been investigated in PC cluster environment. The
paper [8] is concerned with the behaviour of HPA
algorithm [9] in PC cluster environment. The node
synchronization and possibility of different types of
nodes can cause serious performance decrease in PC
clusters. The PC cluster-based modification of CD and
DD algorithms were discussed in [10]. The algorithm
synchronization problem was examined in [11], and an
asynchronous distributed algorithm was introduced in
[12]. A PC cluster-optimised CD algorithm, which takes
the initial data distribution into the consideration, was
introduced in [13].
 The execution time estimation is an important
objective in many applications, and this is especially true
for long running, resource intensive, costly data mining
algorithms. Performance prediction not only allows
estimating the execution time, but also helps to adjust
the parameters, to which the execution time is
particularly sensitive. It allows balancing the associated
costs and the expected benefits of the execution. Good
estimation of resource requirements is also important in
distributed systems, where the balance of the running
time and the amount of processing resources can be fine
tuned.
 This paper is organized as follows: first of all the
widely spread sequential ARM algorithms are described.
Afterwards the basic distributed ARM algorithms are
summarized. Then the detailed analysis of the count
distribution based algorithms is described and a novel
performance model of these algorithms is introduced.
Finally the conclusion of the algorithms analysis is
described.

2 Problem Statement

First we elaborate on some basic concepts of association
rules using the formalism presented in [1]. Let
I={i1,i2,…im} be set of literals, called items. Let
D={t1,t2,…tn} be set of transactions, where each
transaction t is a set of items such that t⊆ I. The itemset
X has support s in the transaction set D if s% of
transactions contains X, here we denote s= support(X).
An association rule is an implication in the form of
X�Y, where , , and X Y=X Y I⊆ ∅∩ . Each rule has
two measures of value, support and confidence. The
support of the rule X�Y is support(X∪Y). The
confidence c of the rule X�Y in the transaction set D
means c% of transactions in D that contain X also
contain Y, which can be written in () ()/c S X Y S X= ∪
form. The problem of mining association rules is to find
all the rules that satisfy a user specified minimum
support and minimum confidence. If support(X) is larger
than a user defined minimum support (denoted here
min_sup), then the itemset X is called large itemset.
 The association rule mining can be decomposed into
two subproblems:

• Finding all of the large itemsets
• Generating rules from these large itemsets

 The second subproblem is much easier than the first
one that is the reason why the ARM algorithms are
different from each other only in the method handling
the first subproblem.

3 Basic Algorithms
In this section some basic association rule mining
algorithms are described. First the Apriori algorithm is
introduced because it is the fundamental algorithm of the
investigated distributed algorithms. Then three
fundamental and referential algorithms are described:
count distribution [4], data distribution [4] and hash-
based partition algorithm [14]. Table 1 contains the
notations that are used in the detailed descriptions of the
algorithms.

k itemset An itemset having k items
L Set of the frequent itemset
Li Set of frequent i itemset

Ci
Set of candidate i itemset
(potentially frequent itemset)

|A| Number of elements in set A
Table 1. Notations in the sequential algorithms

3.1 Apriori algorithm
The Apriori algorithm [2] use the following theorem to
reduce the search space: if an itemset is large then all of
its subsets are large as well. This means it is possible to

generate the potentially large i+1 itemset using large i
itemset. Each subsets of candidate i+1 itemset must be
large itemset. Hereby it is possible to find all large
itemset using database scan repeatedly. During the ith
database scan it counts the occurrence of the i itemset
and by the end of the pass i, it generates the candidates,
which contain i+1 item. Figure 1 shows the pseudo code
of the Apriori algorithm. The main disadvantage of this
algorithm is the multiple database scan. There are many
solutions to reduce the number of database scans
[2][3][5][14]

{ }
()

()

()

()

()

1

2 1

1

1 freq ue n t item se ts

2

{

{
,

}
. m in _sup p

1

}

i

i

i i

i i

i
i

L
C G en era teC an d id a te L
i
w h ile L

fo reach t D

In cre m en tC o un te r C t

c cou n te rL c C
D

i i
C G en era teC an d id a te L

L L

−

←
←

←
≠ ∅

∈

  ← ∈ ≥ 
  

← +
←

← ∪
Fig. 1. Pseudo Code of the Apriori Algorithm

3.2 Count distribution algorithm
The count distribution algorithm [4] is a fundamental
distributed association rule algorithm. The basic idea of
this algorithm is that each of the nodes keeps large
itemsets and counters of candidates locally, which are
related to the whole database. These counters are
maintained in accordance with the local dataset and
incoming counter values. The nodes locally execute the
Apriori algorithm and after reading through the local
dataset they broadcast their own counters to the other
nodes. Hence each of the nodes can generate new
candidates on the basis of the global counter values.

3.2 Data distribution algorithm
Data distribution algorithm [4] offers a solution for the
situation, when one of the nodes does not have enough
memory for all of the candidates. In this case each of the
nodes is responsible for only a part of the candidates.
Each of the nodes counts the occurrence of its own
candidates in the whole dataset. But all of the nodes have
to broadcast their own local database to the other nodes.
The disadvantage of the algorithm is that it generates
very large network traffic, because it does not use any
kind of optimisation to reduce the network traffic.

3.3 Counting While Distributing algorithm
The Counting While Distributing (CWD) [13]algorithm
is based on count distribution algorithm but it uses a
triangular matrix to find the 2 frequent itemset [7]. The
other modification is that the traditional CD algorithm

uses all-to-all broadcast mechanism to share own local
counters when the nodes finished a database scan but in
PC cluster environment the all to all broadcast can be
very expensive. Therefore in this algorithm there is a
coordinator node that collects the local counter value of
the candidates and generates new candidates [10][12].
 The traditional distributed association rule mining
algorithms do not consider the initial database
distribution cost hence they start the itemset counting
after the data distribution. Due to the increased searching
capability of triangular matrix representation of the 2
itemset it is possible to count the 2 itemsets during the
data distribution phase. Therefore after the initial data
distribution the coordinator can immediately collect the
counters of the 2 itemsets. This solution allows
overlapping the initial data distribution and a significant
part of the itemsets counting.
 The asynchronous communication model can improve
the overall efficiency of the cluster. The asynchronous
communication model facilitates to overlap the
communication and the data processing. During the
initial data distribution the coordinator node creates
small data fragments from the database and these are
sent to the worker nodes. This fragmentation keeps the
possibility to increase the efficiency of the data
processing. Due to the asynchronous communication the
worker nodes can process a data fragment while a new
one is arriving through the network communication
channel.

4. Performance Model
In order to develop an analytical model capturing the
performance of the algorithms, a detailed investigation
of its operation is needed. The main features of its
execution time behaviour are to be determined. The
investigated parameters are independent of each other,
thus their effects on the response time can be observed
separately. Execution time of each CD-based algorithm
can be divided into four independent parts:

• Initial data distribution
• Itemset counting
• Generating new candidates
• Node to node communication

 The aim of the performance modelling is to find a
model that can estimate the execution time based on the
data mining input parameters (data set, minimum
support) and number of working nodes. This model
independently takes into consideration the effects of data
set parameters and the effects of mining and cluster
parameters. Model parameters depend on the mining
cluster, therefore the model parameters can be different
in a different environment. Table 2 contains the
notations that are used in the model

4.1 Simulation environment
 The algorithms are implemented in standard C++
using the pyramid [15] asynchronous message passing
library on Windows XP platform. The simulation took
place in the PC laboratory of the department using 11
uniform PCs having an Intel Pentium IV processor of
2.26 GHz, 512 MB RAM, and an Intel 82801DB
PRO/100 VE network adapter of 100 Mbits. The nodes
were connected through a switching hub of type 3Com
SuperStack 4226T.
 The datasets used by the algorithms are generated by
IBM synthetic data generator [2]. The main parameters
of the processed dataset are the number of the
transactions (D), the average size of the transactions (T),
and the average length of the maximal frequent itemsets
(I).The parameter T varies from 10 to 25 by 5, the
parameter I was in the range of 6 to 10. Earlier
experiences have showed that there is a liner relationship
between the response time and number of transaction
[16] hence this parameter was fixed to 500.000. The
maximal number of the items that can occur in a
transaction was 1000. The CD and CWD algorithms
were investigated and evaluated. The introduced figures
are based on dataset T20I8D500K and the mining
algorithm is CWD, but the behaviour of the identified
parameters is similar to the introduced ones.

p Number of nodes
s Minimum support
C Const parameter
T Average size of the market baskets
D Number of market baskets

Table2. Notations of the model

4.2 Cost of initial data distribution
The initial data distribution is independent of minimum
support; it depends on the size of the cluster. This cost
can be estimated based on a parallel communication
channel model [17]. Figure 2 shows the measured and
estimated execution time of the initial data distribution.
The parameter of the model can be identified with the
least square method. Equation 1 shows the model, the
identified parameters and the average relative error of
the model.

() 1
2

1

2

,

26.319717
Identifed by least square method

9.517830
Re 10.44%

distr
CT p C
p

C
C
Avg lErr

= +

= 
→= 

=
Eq. 1. Model and parameters of the data distribution phase

4.3 Cost of itemset counting
 Basically the substantial part of the response time is
the cost of itemset counting. Figure 3 and 4 show the

itemset counting part of the execution time in function of
minimum support and processing nodes. It is possible to
realise that this time depends on minimum support
exponentially. The scale up capability of the itemset
counting is satisfactory as it depends on number of nodes
in 1/p way. Equation 2 shows the model its parameters
and the average relative error of the model.

Data Distribution Prediction

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10
Nodes

Ti
m

e

Measured Predicted

\

Fig. 2. Prediction of the data distribution cost

Client Processing Prediction

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10Nodes

Ti
m

e

Measured(0.5%) Predicted(0.5%) Measured(0.8%)
Predicted(0.8%) Measured(1.5%) Predicted(1.5%)

Fig. 3. Itemset counting in function of processing nodes

Client Processing Prediction

0

50

100

150

200

250

300

350

400

450

0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015
Minimum Support

Ti
m

e

Measured(1) Predicted(1) Measured(5)
Predicted(5) Measured(10) Predicted(10)

Fig. 4. Itemset counting in function of minimum support

() 1 2
3

1
2
3

,

619.910789
9841.926376
37.906202
Re 8.26%

C s
client

CT s p e C
p

C
C
C
Avg lErr

− ⋅  
= ⋅ + 

 
=
=
=

=
Eq. 2. Model and parameters of the itemset counting phase

4.4 Cost of new candidate generation
The cost of new candidate generation is linearly
dependent on the number of working nodes as the nodes
has to collect the itemset counters from the other nodes.

This cost is decreasing when the minimum support
threshold is increasing; experimental results show that
the new candidate generation cost can be estimated by a
1/s3 function. Figure 5 and 6 show the response time and
the estimator and equation 3 shows the model and its
parameters.

() ()1
2 3 43

1 4
1 3 2 3 2 43 3

8
1 3

7
1 4

2
1 3

3
1 3

,

2.2733 10

1.2483 10

1.0508 10

8.9439 10
Re 11.41%

coordinator
CT p s C C p C
s

C CpC C C C p C C
s s

C C

C C

C C

C C
Avg lErr

−

−

−

−

 = + ⋅ ⋅ + = 
 

= + + ⋅ +

= ⋅

= ⋅

= ⋅

= − ⋅

=
Eq. 3 Model and parameters of the new candidate generation

4.5 Cost of node to node communication
The node to node communication cost depends on the
architecture of the ARM algorithm. Due to the network
communication capabilities the PC cluster based ARM
algorithms have a centralized component, which collects
the counter values and generates new candidates. Thus
the network communication cost decreases and this cost
can be estimated by a linear function.

Coordinator Processing Prediction

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10
Nodes

Ti
m

e

Measured(0.5%) Predicted(0.5%) Measured(0.8%)
Predicted(0.8%) Measured(1.5%) Predicted(1.5%)

Fig. 5 New candidate generation cost in function of processing node

Coordinator Processing Prediction

0

0.5

1

1.5

2

2.5

3

3.5

0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015
Minimum Support

Ti
m

e

Measured(1) Predicted(1) Measured(5) Predicted(5)
Measred(10) Predicted(10)

`

Fig. 6. New candidate generation cost in function of minimum support

Experimental results show that the node to node
communication cost is independent of the minimum
support threshold. This behaviour is illustrated in Figure
7. Figure 8 shows the predicted and measured

communication cost and Equation 4 shows the node to
node communication model and its parameters.

Communication

0

1

2

3

4

5

6

7

8

9

0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015
Minimum Support

Ti
m

e

1 2 3 4 5 6 7 8 9 10

Fig.7. Communication cost in function of minimum support

() 1 2

1
2

0.920874
1.190056

Re 11,57%

commT p C p C
C
C
Avg lErr

= ⋅ +
=
= −

=
Eq. 4 Model and parameters of the node to node communication

Communication Prediction

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10Nodes

Ti
m

e

Measured(0.5%) Measured(0.8%) Measured(1.5%) Predicted

Fig. 8. Communication cost in function of processing nodes

4.6 Execution time prediction
The total execution time can be estimated by the sum of
the previously introduced costs. Equation 5 shows the
whole model. Figure 9 and 10 show the execution time
prediction; Figure 11 shows the error surface of the
prediction. The average relative error of the model is
8.28%.

() () () () ()
()

()

()
1

1
2

1
2 3 42

2
3

1 2

, , ,

,

client

exec distr server client comm
distr

distr
exec

server
server server server

client
C s client

comm comm

T s p T p T s p T s p T p
CT s p C

p
C C C p C

s
Ce C

p
C p C

− ⋅

= + + +
 

= + + 
 

 
+ + ⋅ ⋅ + + 
 

 
+ ⋅ + + 

 
+ ⋅ +

Eq. 5 Prediction model for the execution time

4.7 Effects of the dataset parameters
The dataset parameters are independent of the data
mining and cluster parameters. Thus their effects can be
investigated independently. The model parameters
introduced above can be identified on a sample database,
and the effects of the dataset parameters can be

identified by some other datasets. The substantial part of
the response time is finding 2 itemsets therefore the
execution time dependence on the average size of the
transactions can be modelled with a polynomial of the
degree two, except the data distribution cost, as it
depends on only the size of the dataset. The parameters
of the polynomial functions can be identified with the
least square method. Equation 6, 7, 8 and 9 show the
modified model. Average relative error of this model is
9,87 percent.

Execution Time Prediction

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10Nodes

Ti
m

e

Measured(0.5%) Predicted(0.5%) Measured(0.8%)
Predicted(0.8%) Measured(1.5%) Predicted(1.5%)

.Fig 9. Execution time prediction in function of processing nodes

Execution Time Prediction

0

50

100

150

200

250

300

350

400

450

500

0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015
Minimum Support

Ti
m

e

Measured(1) Predicted(1) Measured(5)
Predicted(5) Measured(10) Predited(10)

Fig 10. Execution time prediction in function of minimum support

1 2 3 4 5 6 7 8 9 10
0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

%

Nodes

M
in

im
um

Su
pp

or
t

Error Surface of Execution Time Prediction

0.00%-5.00% 5.00%-10.00% 10.00%-15.00% 15.00%-20.00%

Fig 11. Error surface of the execution time prediction

() () ()

()

()

1
2

1

, , ,

,

distr distr distr

distr

distr
distr

T p T D f T D g p
Cg p C
p

f T D A T D

= ⋅

= +

= ⋅ ⋅

Eq. 6. Effects of dataset parameters on the data distribution time

() () ()

() ()

()

1
2 3 43

2
1 2 31

, , ,

,

coordinator coordinator coordinator

coordinator

coord coord coord
coordinator

T p s T f T g p s

Cg p s C C p C
s

f T A T A T A

= ⋅

 = + ⋅ ⋅ + 
 

= ⋅ + ⋅ +
Eq. 7. Effects of dataset parameters on the candidate generation time

() () ()

()

() ()

1 2
3

2
1 2 3

, , , , ,

,

,

client client client

C s
client

client client client
client

T p s T D f T D g p s

Cg p s e C
p

f T D D A T A T A

− ⋅

= ⋅

 
= + 

 

= ⋅ ⋅ + ⋅ +
Eq. 8. Effects of dataset parameters on the itemset counting time

() () ()
()
()

1 2

2
1 2 3

,comm comm comm

comm

comm comm comm
comm

T p T f T g p

g p C p C

f T A T A T A

= ⋅

= ⋅ +

= ⋅ + ⋅ +
Eq. 9. Effects of dataset parameters on the node to node communication time

5. Conclusion
In this paper basic distributed ARM algorithms have
been investigated. A new performance model has been
introduced, which keeps the possibility the execution
time prediction of these algorithms. A simple model was
provided to anticipate the performance of the algorithm,
which describes well the behaviour of the data mining
algorithm for a wide range of parameters. The main
contribution of the paper was predicting the behaviour of
a complex probability-based data mining algorithm in a
relatively simple, closed numerical form allowing a good
estimation of execution times. The model was validated
by comparing the calculated and measured performance.
Experimental results has showed that the suggested
model is reasonably accurate in a wide domain having an
average error below 10 percent.

6. Acknowledgement
This work was supported by IBM Hungary and the fund
of the Hungarian Academy of Sciences for control
research and the Hungarian National Research Fund
(grant number: T042741).

References:

[1] R. Agrawal, T. Imielinski, and A. Swami, Mining
association rules between sets of items in large databases,
in Proc. of ACM-SIGMOD Conference, 1993
[2] R. Agrawal and R. Srikant, Fast algorithms for
mining association rules, in Proc. of 20th Very Large
Databases Conference, 1994
[3] J. Han J. Pei and Y. Yin, Mining Frequent Patterns
without Candidate Generation, in Proc. of ACM
SIGMOD International. Conference on Management of
Data, 2000

[4] R. Agrwal and J.C. Schafer, Parallel mining of
association rules, in IEEE Trans. Knowledge and Data
Engineering, vol. 8, no 6, 1996
[5] O. R. Zaïne, M. El-Hajj and P. Lu, Fast Parallel
Association Rule Mining Without Candidacy Generation,
in Proc. of IEEE International Conference on Data
Mining, 2001
[6] Renáta Iváncsy, Ferenc Kovács and István Vajk,
An Analysis of Association Rule Mining Algorithms, in
Proc. of International Conference of ICSC EIS, 2004
[7] Ferenc Kovács, Renáta Iváncsy and István Vajk,
Evaluation of the Serial Association Rule Mining
Algorithms, in Proc. of International Conference of
IASTED DBA, 2004
[8] M. Tamura and M. Kitsuregawa, Dynamic load
balancing for parallel association rule mining on
heterogeneous PC cluster system, in Proc. of 25th Very
Large Databases Conference, 1999
[9] T. Shintani and M. Kitsuregawa, Hash based
parallel algorithms for mining association rules, in Proc.
of Parallel and Distributed Information Systems
Conference, 1996
[10] T. Shimomura and S. Shibusawa, Performance
Evaluation of Distributed Algorithms for Mining
Association Rules on Workstation Cluster, in Proc. of
IEEE International Workshops on Parallel Processing
(ICPP’00- Workshops), 2000
[11] J. Zhang, H. Shi and L. Zheng, A Method and
Algorithm of Distributed Mining Association Rules in
Synchronism, in Proc. of IEEE International Conference
on Machine Learning and Cybernetics, 2002
[12] Ferenc Kovács, Renáta Iváncsy and István Vajk,
Dynamic Itemset Counting in PC Cluster Based
Association Rule Mining, in Proc. of International
Conference of ICSC EIS, 2004
[13] Sándor Juhász and Ferenc Kovács, A new PC
Cluster Based Distributed Association Rule Mining
Algorithm, Scientific Bulletin of Politechnica University
of Timisoara Transactions on Automatic Control and
Computer Science Vol. 49 No.2 2004
[14] S.Brin, R. Motawani, J.D. Ullman and S. Tsur,
Dynamic Item set counting and implication rules for
market basket data, in Proc. of ACM-SIGMOD
Conference, 1997
[15] S. Juhász et al., The Pyramid Project, Budapest
University of Technology and Economics, Department of
Automation and Applied Informatics, 2002.
http://avalon.aut.bme.hu/~sanyo/piramis
[16] Ferenc Kovács and István Vajk, Performance
Analysis of PC Cluster Based Association Rule Mining
Algorithms, in Proc. of IEEE International Conference
on Intelligent Systems Design and Aplplication, 2004
[17] Sándor Juhász, Ferenc Kovács and Hassan Charaf,
Asynchronous Communication Model for Cluster
Systems, in Proc. of IASTED International Conference
on Parallel and Distributed Computing and Networks,
2004

