A self-adaptable Inference Engine

CHINH PHAN CONG

Prof. AXEL HUNGER

Department of Multimedia and Software Engineering

University of Essen-Duisburg

Bismarckstrasse 81, Raum BB 318, 47057 Duisburg

GERMANY

Abstract: - CongaXpert is a Web-based consultation system, which has been developed at the university of Duisburg-Essen, Germany for years for the educational purpose. An expert system has been developed as the core of the system. In this paper, we will present a self-adaptable inference engine that can act like a human being in aspect of finding out necessary knowledge itself from the main knowledge base and from the working context to fulfill its tasks.

Key-Words: - Self-adaptable Inference Engine, Inference Engine, Expert System.

1 Introduction

CongaXpert is a Web-based consultation system which has been developed at the university of Duisburg-Essen, Germany for years for the educational purpose. It applies the rules-based expert system technology.

From the user’s outlook, a common consultative process of a consultation system consists of three stages:

· Stage 1:

An user expresses that he wants to have a consultation about something. This can be simply a program call from the user.

· Stage 2:

The consultation system collects personal information of the user. So it asks some questions, and the user answers them.

During conversation, the user can ask the system for an explanation. There are some kinds of explanation:

- Terminology explanation: there may be some strange words or strange concepts which have been used in the questions and the user does not know or understand them, therefore he needs an explanation about the meaning of them.

- Why-explanation: the user may want to know why he has to answer a question from the system or why the system needs the asking information.

· Stage 3:

From these collected information, the system will do a reasoning and gives some advice to the user.

After receiving these advice from the system, the user may not trust it immediately, and he/she wants to know how the system has reached these advice. The system should persuade him of the way that the system has done, that means the user needs a How-explanation.

To do the tasks of the stage 3, the system needs a knowledge base to reason out the right advice for the user. This knowledge base is the main knowledge base and is the core of a consultation system.

For the stage 2, a consultation system normally also needs a knowledge base to control the process of asking questions. That is a set of rules which specify when to ask what, for example:

If X exists then ask Y.

If Y exists then ask Z.

Additionally the system needs also a knowledge base for explanations: Terminology-, Why-, How-explanation which may be requested during conversation.

In comparison with a human being, an adviser needs only the main knowledge for reasoning and the knowledge about terminologies as well for a consultation session. Another knowledge, he can find out itself or reason out itself. This character is very necessary for us, because our system offers students from over 50 countries consultations about, for example, if they can get an admission to study in our university or not. Because every country has an own education system which can be totally different from another countries. Therefore we have to set a different main knowledge base for each country. These main knowledge bases may be changed at any time. If a change happens, we have to modify not only the main knowledge base but also the corresponding knowledge base which is used to control the process of asking questions.

To reduce the heavy load for building and maintaining the knowledge base, we have to reduce redundant rules in the knowledge base and we need an inference engine which has the ability to find those eliminated rules itself when necessary.

In this paper, we will present a self-adaptable inference engine which can act like a human being in aspect of the ability to find out necessary knowledge itself from the main knowledge base and from the working context to fulfill its tasks.

2 Problem Formulation

Beside the main tasks for a normal inference engine, we would like to set some tasks more for our inference engine:

· Giving a support to control questioning process without need of any rules which are set from the human being for this process.

· Giving a support to explanation abilities: Why- and How-explanations. The problem with the Terminology-explanation can be solved easily by using a database which stores terminologies and their corresponding explanations. Therefore the problem with Terminology-explanation will be not covered in this paper.

· Predicting the next action, preparing itself during free time and learning by experience to improve its working speed.
The inference engine has got only the main knowledge base to reason out the right advice for the users.

In the next part, we are going to present an algorithm to cope with those above tasks.

3 Problem Solution

3.1. Building a reasoning network

For an easier presentation, let us begin with an example of two following rules:

If

((A and B) and (C and (D or E) and F)

Then

Action1

If

(A and B and E)

Then

Action2

In which A, B, C, D, E, F are conditions.

The reasoning network for these rules is built as follows:

 Gama node

 Beta node

 Anpha node

Fig. 1: reasoning network

The tasks of a Gama node:

· Saving inputted facts.

· Providing their Alpha nodes with those facts which they are keeping up.

· Receiving question requests from Alpha nodes and putting them into a question queue if it can not satisfy those requests, that means if the Gama node does not have got facts, which the Alpha nodes are expecting.

The tasks of an Alpha node:

· Receiving facts from its Gama node and checking whether they satisfy its internal condition. If it is satisfied, the Alpha node will send a token to its successors which are Beta nodes

· Receiving question requests from Beta nodes and transfering them to its Gama node.

The tasks of a Beta node:

· Saving the Id of the rule, which it belongs to. A Beta node can belong to many different rules, so it has to save all Ids of those rules.

· Receiving tokens from its Alpha nodes. If it has got enough tokens on hands, it will send a token to its successors. The sending token will be a conjunction of two received tokens.

· If it has not received enough tokens yet, the Beta node will send a question request to the Control Unit. After receiving an acknowledge from the Control Unit, it will send a question request toward the Alpha node or the Beta node which is responsible to provide the expecting token.

· When receiving a question request from another Beta node, it tries to find the shortest way to an Alpha node, and it delivers the question request upward.

To support to find the shortest way, backward distance numbers are used. In the figure 1, they are black numbers at each input line of Beta nodes. Each Beta node has got two input lines. Each input line will be granted a number which expresses the distance from the Beta node to an Alpha node. The input lines which come directly from Alpha nodes, will have got a backward distance number of 1. For example, the Beta node b2 has got two input lines and each line has a backward distance number of 1. So the output line of b2 will have a backward distance number of 2 which is a sum of backward distance numbers of the two input lines.

With these backward distance numbers, the Beta nodes can find the shortest way to reach the Alpha nodes. For example, b3 has one input line with the backward distance number of 1 and one input line with the backward distance number of 2, so the shortest way is the line to the Alpha node C with the backward distance number of 1.

· If a Beta node is the last node of a rule, after it has got enough tokens in hand, it do not send a token further, but puts an action request into an action queue.
The tasks of the Control Unit:

· Choosing a request Beta node. At any time, the Control Unit may receive several question requests from some Beta nodes. It has to decide which one of them should be served first.

One criterion is to choose the request Beta node which has got the smallest forward distance number.

In the figure 1, the forward distance numbers are the red numbers. That is the distance from a Beta node to the last Beta node of the corresponding rule. For example, b5, b6 are the last Beta nodes which have got a forward distance number of 0. The Beta node b4 has got a forward distance number of 1 and so on.

That means, the choice is action-oriented. The chosen Beta node is the nearest to an action.

If there are some request Beta nodes which have the same a forward distance number, the Control Unit will compare the length of their tokens and choose the Beta node which has got the longest token. Remember, a token consists of the Alpha nodes’ Ids. An Alpha node only gives token when its condition is satisfied. Therefore the more a token is long, the more many internal conditions of Alpha nodes have been satisfied.

· Serving question requests from Gama nodes.

The Control Unit will send requests to the interface module, receives inputted facts from it and delievers them to the Gama nodes.

· Serving requests of Why- and How-explanation. We will explain this function later.

3.2. Comparison with the other works:

This network is similar to the Rete network, but there are some differences:

· In the Rete network, there are Alpha memory nodes and Beta memory nodes which correspond to Alpha nodes and Beta nodes. In this network, the Alpha memory node is merged into the Alpha node and the Beta memory node is merged into the Beta node as well.

· In the Rete network, there is only one direction of data flow, from top to bottom. In this network, there are two directions of data flow, from top to bottom for transmitting tokens like in Rete network, from bottom to top for transmitting question requests.

· The nodes in this network are more active. If they receive a request and cannot satisfy it, they will forward it to the other ones.

The essential difference between two networks lies in how do all things work together. That will be presented in the next part.

3.3. How do they work together?
Let us assume that a fact for the Gama node a is inserted. The Gama node a will save the fact into its memory and forwards it to its Alpha nodes. In this case, the Alpha node A will receive the fact , and checks its internal condition. If the internal condition is satisfied, A will save the fact in its memory, then sends a token to its successors, in this case to the Beta node b1. A token is the ID of the Apha node, in this case it is the Id of the node A as follows:

The Beta node b1 receives a token from A, it recognizes that it needs also a token from the Alpha node B. Therefore b1 sends a request to the Control Unit. The request has a format as follows:

“Token” is the token which b1 has got, which in this case is the Id of A.

FDN stands for the forward distance number of b1
The Control Unit will give b1 an acknowledgement immediately, because b1 is the sole request Beta node at the moment.

After receiving the acknowledgement from the Control Unit, b1 has the right to send a question request to the Anpha node B. The question request has following format:

The Anpha node B will append its Id to the question request and sends it to the Gama node b.

The Gama node b will also append its Id to the question request and put the request into a question queue.

The Control Unit will take the question request from the question queue, sends a request to the interface module, and waits for a fact coming from the interface module. After receiving the fact, the Control Unit will send an answer to the Gama node b. The answer has following format:

The Gama node b takes the Id of B away, and sends the answer to the Anpha node B.

The Alpha node B will get the fact, checks it with its condition. If the condition is satisfied, it will send a token to b1. The token is simply the Id of the Alpha node B.

The Beta node b1 has got two tokens on hand, it sends a new token to its successors, b4 and b5. The new token is a conjunction of the two old tokens (from A and B).

b4 and b5 will send requests to the Control Unit at the same time, because they do not have got enough tokens on hand. The Control Unit will choose to serve b5 first, because b5 has the smaller forward distance number.

If b5 receives a token from the Alpha node F, it will put an action request into action queue. The action request has a format as follows:

After serving b5, if b5 does not get a token, the Control Unit will serve b4.

Now b4 sends a question request to b3. b3 will find the shortest way to reach an Alpha node. The way to the Alpha node C is the best one because of the smallest backward distance number of 1. The progress is continuous…

3.4. Explanation ability

· Why-explanation:

To response a request of why-explanation, the explanation module needs some information:

- What facts has the user given in?

- Which rules are being observed?

The Control Unit can provide the explanation module with these information. Because for each question, the Control Unit knows the Id of the request Beta node and the token that the request Beta node has got. These information are contained in the question request.

The token contains the information about Alpha nodes. From them, the Control Unit knows what facts the user has given in.

The Id of the request Beta node identifies the Beta node, from it, the Control Unit knows also which rules the request Beta node belongs to, because each Beta node keeps the information about its rule-ids in its memory.

· How-explanation:

To answer a request of how-explanation, the explanation module needs some information:

- What facts has the user given in?

- Which rule was used to reach the result?

Remember, the Beta node puts an action request into action queue in following format.

The token contains the information about Alpha nodes. From them, the Control Unit knows what facts the user has given in.

The rule-id identifies which rule was used to reach the result.

Therefore the explanation module can get enough information from the Control Unit.

3.5. Improving the speed of inference engine

3.5.1. Reducing redundant dataflow

Improving the speed of inference engine has been an interesting subject for a lot of researchers. Many algorithms were born and have been used widely in implementing rule-based systems. Some of them are Rete (Forgy, 1982), Treat (Miranker, 1990), Match Box (Perlin and Debaud, 1989; Perlin, 1991a), and Tree (Bouaud, 1993). In general, these algorithms try to reduce redundant dataflow, or to skip any element of dataflow such as propagating a token to a node which will be fruitless, that means, it will not result in any new matches
Basing on the above principle, we have two following points to improve the speed of our inference engine:

· Using the distance number. In the part 3.1, we can see how to use it. The main idea is to find the shortest way so that a question request reaches a Gama node as soon as possible.

· The Ids of nodes are saved in each question request. So it economizes much time for the return way. If not, nodes have to broadcast tokens as in Rete algorithm. It is to avoid the problem of “null right activations” [9] (page 97)

3.5.2.Learning by experience

One important ability of the human being is the ability to learn by experience. The inference engine should have this ability, so that it can improve its performance itself.

The Control Unit can observe the process of performing a question request. If it is successful, an experience can be saved. An experience is simply the question request which was performed successful.

For example, after performing a question request from the Beta node b4 successfully, the Control Unit can save the question request as an experience:

This experience means, when b4 has received a token from b1, then a question request as above should be performed by the Control Unit. From now on, b4 do not have to initialize a question request as before. This way can save a lot of time.

Because our system offers a Web-based consultation, and one character of Web-based applications is that all things will be removed from system memory when the session expired. Therefore experiences should be saved into database, so that they can be loaded again into system memory for uses in the next time of consultation.

3.5.3. Predicting action and preparing itself during free time

One important ability of the human being is the ability to predict what will happen and then he can prepare himself for it. So when it happens, he can react more quickly. If an inference engine has got this ability, it can improve its performance itself.
In stage 2 of the consultative process, an inference engine does nothing while the user is choosing an answer for the received question. This duration may be some seconds. The inference engine can utilise this duration to make plans. There are only two possibilities: the inputted fact will satisfy the internal condition of the Alpha node or not. So the inference engine can prepare itself as follows:

· If the inputted fact satisfies the internal condition of the Alpha node, the question request Beta node will receive a token, and then sends a token to its successors. Applying principles of choosing a question request Beta node, the Control Unit can choose one from these successors to serve first. Then the process of creating a question request can be performed by nodes and the Control Unit will receive a question request before the expecting fact comes.

· If the inputted fact does not satisfy the internal condition of the Alpha node, the Control Unit will choose the second request Beta node to serve.

These works can be prepared or done before the user’s answer comes. This help the inference engine to react more quickly when a fact comes.

4 Conclusion

A self-adaptable inference engine has been presented. Beside the main tasks for a normal inference engine, it has got some characters of a human being in some way: the ability of finding out necessary knowledge itself, the ability of learning by experience, the ability of predicting the next action and preparing itself. These characters give some following practical profits:

· Reducing the heavy load for buiding and maintaining the knowledge base.

· System’s performance will be improved automatically while the system is running.

The concept and model of this inference engine can be applied easily into other consultation systems.

References:

[1] Bouaud, J., TREE, The heuristic driven join strategy of a RETE-like matcher, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, 1993, pp. 496-502.
[2] Haun, Matthias, Wissensbasierte Systeme : eine praxisorientierte Einführung, Expert-Verlag, 2000.

[3] Krishnamoorthy C.S, Rajeev S., Artificial Intelligence and Expert System for Engineers, CRC Press, Inc, 1996.

[4] Miranker, D. P., TREAT: A New and Efficient Match Algorithm for AI Production Systems, Morgan Kaufmann, San Mateo, CA., 1990
[5] Paul Harmon, Brian Sawyer, Creating Expert Systems for Business and Industry, John Willey & Sons, Inc., 1990.

[6] Pei Wang, Experience-Grounded Semantics: A theory for intelligent systems, 2004.

[7] Peter Jackson, Introduction to Expert System, Addison-Wesley, 1986.

[8] Perlin, M. and Debaud, J.-M., Match box: fine-grained parallelism at the match level, Proceedings of the IEEE International Workshop on Tools for Artificial Intelligence, 1989, pp. 428-434
[9] Robert B. Doorenbos, Production Matching for Large Learning Systems, Ph.D theis, 1995.

a

b

c

d

e

E

D

C

B

A

&

| |

&

&

&

Action 2

Action 1

1

1

2

b3

&

2

1

1

0

1

0

1

1

3

1

2

fact

Id of B

b1

3

2

2

b2

F

f

b4

b5

b6

Id of b1

Token

Id of b

Id of B

Id of b1

Token

Id of B

Id of b1

Token

Id of b1

Token

FDN

Token

Id of A

fact

ID of b1

Token

Id of B

Id of A

Id of b3

Id of b4

Id of C

Rule-id

Token

Rule-id

Token

Token at b4

Id of c

