Extracting synchronization-free threads in perfectly nested loops using the Omega project software

W. Bielecki, K. Siedlecki

Faculty of Computer Science

Technical University of Szczecin

Zolnierska 49 st., 71-210 Szczecin

POLAND

Abstract: - Algorithms, permitting us to find synchronization-free threads comprised of iterations of perfectly nested uniform and non-uniform loops, are presented. They require an exact representation of loop-carried dependences. To describe and implement the algorithms, the dependence analysis by Pugh and Wonnacott was chosen where dependences are represented in the form of tuple relations. The main advantage of the proposed approach is that it permits us to extract more synchronization-free parallelism than that yielded with well-known techniques including the affine partitioning framework. The algorithms proposed have been implemented and verified by means of the Omega project software. Experiments with the Livermore loops are presented.

Key-Words: - synchronization-free parallelism, perfectly nested loops, Omega project software.

1 Introduction

Finding synchronization-free parallelism in loops is of great importance for distributed computing, enhancing code locality, and reducing memory requirements. Different techniques have been developed to extract synchronization-free parallelism available in loops, for example, [1], [3], [4], [12], [13], [14], [16], [18] ,[19]. However, to our knowledge, none of well-known techniques extracts the entire synchronization-free parallelism available in the general case of affine non-uniform loops. The goal of this paper is to present an approach which permits us to extract more synchronization-free parallelism available in loops than that revealed with well-known approaches. It is applicable to parameterized perfectly nested both uniform and non-uniform loops.

2 Background

In this paper, we deal with perfectly nested affine loop nests where, for given loop indices, lower and upper bounds as well as array subscripts and conditionals are affine functions of surrounding loop indices and possibly of structure parameters, and the loop steps are known constants.

 For the perfectly nested loop, all its statements are contained within the innermost nest. We refer to a particular textual ordered execution of all the statements within the loop body as an iteration. Each iteration of an n-level nested loop is represented with an iteration vector I of dimension n.

Two iterations I and J are dependent if both access the same memory location and if at least one access is a write. We refer to I and J as the source and destination of a dependence, respectively, provided that I is lexicographically less than J (I
[image: image1.wmf]p

 J). A vector d=J-I is referred to as the dependence vector. If all the coordinates of each dependence vector are constants, we say that dependences and a correspondent loop are uniform, otherwise they are non-uniform.

Our approach requires an exact representation of loop-carried dependences and consequently an exact dependence analysis which detects a dependence if and only if it exists. To describe and implement our algorithms, we have chosen the dependence analysis proposed by Pugh and Wonnacott [20] where dependences are represented with dependence relations comprised of Presburger formulas, which can be built up out of linear constraints over integer variables, logical connectives, and universal and existential quantifiers[20]. We assume that the reader is familiar with this dependence analysis.

Definition 1. A common iteration is one that belongs simultaneously to different pairs of dependent iterations and these pairs are represented with different dependence relations.

We refer to the source(destination) of a dependence as the fair dependence source(destination) if it is not a destination(source) of any other dependence.

Definition 2. A thread is a sequence of dependent iterations including a fair dependence source and all the dependence destinations such that each dependence destination except from the lexicographically maximal one(fair dependence destination) is simultaneously the source of the next dependence and all dependences are represented with the same dependence relation.

Definition 3. A thread is independent if it does not include any common iteration, otherwise it is dependent.

 As follows from Definition 3, an independent thread is synchronization-free, i.e., it can be executed without synchronization with the other threads.

Definition 4. The source(destination) of a thread is the fair dependence source(destination) that this thread comprises, i.e., the lexicographically minimal (maximal) iteration among all the iterations belonging to this thread. Fig. 1 illustrates the above definitions.

 Our algorithms are based on the operations on sets and relations described in [17] and we assume that the reader is familiar with them. However, it is worth to note that there exist two relations related to transitive closure: positive transitive closure, R+, and transitive closure, R*=R+ (I, where I denotes the identity relation, and both of them are used in our algorithms.

 Our paper deals only with extracting independent threads. To parallelize the rest iterations(independent, i.e., those that do not belong to any thread as well as iterations comprised in dependent threads), well-known transformations can be applied, for example, [5], [8], [9], [10], [11], [19].

[image: image2.jpg]Common
rations

speaiyy juspuadeq

speaiyy Juspuadapul

B dC

Sources of dependent Sources of independent
threads (set DT) threads (set IT)

(s4195) sa0nos
aouspuadap Jie4

Figure 1. Fair dependence sources, common iterations, dependent and independent threads, and sources of threads.

 Our approach includes the following steps. Firstly, to increase the number of independent threads, redundant dependences have to be removed. The removal of redundant dependences is a well-known problem considered in many publications, for example, in [15] and it is out of the scope of this paper. Secondly, we have to extract a set of all fair dependence sources and next split it into two sets including sources of dependent and independent threads, respectively. The last step is to find iterations belonging to each independent thread and to generate code scanning independent threads and their iterations in lexicographic order.

3 Finding sources of threads

In this section, we attach an algorithm that permits us to find the lexicographically minimal iteration among all the iterations being contained in a thread. Such an iteration is the source of a thread.

 The idea of the algorithm is illustrated with Figure 2. First, we find a set including common iterations, CI, and a set comprising fair dependence sources, FS. Next applying the inverse of the union of all dependence relations to set CI, we calculate a set of dependence sources, DT1, belonging to dependent threads and lying on the paths from common iterations to fair dependence sources. Then, a set comprising sources for dependent threads, DT, is calculated as the intersection of sets DT1 and FS. A set including sources for independent threads, IT, is formed as the difference between sets FS and DT. To increase the number of synchronization-free threads, the algorithm envisages merging two dependent threads into one independent thread when the destination of a dependent thread is simultaneously the source of the other dependent thread.

[image: image3.png][e e e————

Sources of dependent
threads (set DT)

Figure 2. Finding sources of dependent threads.

Algorithm 1. Determining sources of dependent and independent threads.

Input: a set of relations, S, representing loop-carried dependences: R1, R2,…,Rm, where m is the number of relations.

Output: a set of relations, S={R1, R2,…,Rm(}, m((m; a set of sources of dependent threads, DT; a set of sources of independent threads, IT.

1. Initialize a set CI representing common iterations as follows

CI:=FALSE.

2. Find set CI. For each pair of relations Ri and Rj in set S, where i(j, i,j(m, do steps 2.1, 2.2, 2.3, and 2.4:

2.1 _CI:=FALSE,

Temp1:= (domain Ri) ((range Ri) /* Temp1 includes all the dependent iterations originated by Ri */
Temp2:= (domain Rj) ((range Rj) /* Temp2 includes all the dependent iterations originated by Rj */
_CI:= Temp1 (Temp2 /* _CI represents common iterations originated by Ri and Rj */

2.2 Remove from _CI the fair dependence sources originated by Ri and which are simultaneously the fair dependence destinations originated by Rj /* This step is to permit us to merge two dependent threads into one independent thread when the source of a thread originated by Ri is simultaneously the destination of a thread originated by Rj */.
Temp1:= (domain Ri) – (range Ri) /* Temp1 includes the fair dependence sources originated by Ri */
Temp2:= (range Rj) – (domain Rj) /* Temp2 includes fair dependence destinations originated by Rj */
If (Temp1 (Temp2) (FALSE then _CI:= _CI – (Temp1 (Temp2) /* _CI does not include the fair dependence sources originated by Ri and which are simultaneously the fair dependence destinations originated by Rj */.

Replace relations Ri and Rj in set S with a new relation Ri = Ri (Rj , m = m-1, go to step 2. /* the union of relations Ri and Rj describes all the iterations of one independent thread formed by merging two threads described by relations Ri and Rj, respectively */

2.3 Remove from _CI the fair dependence destinations originated by Ri and which are simultaneously the fair dependence sources originated by Rj. /* This step is to permit us to merge two threads into one thread when the source of a thread originated by Rj is simultaneously the destination of a thread originated by Ri */
Temp1:= (range Ri) – (domain Ri) /* Temp1 includes the fair dependence destinations originated by Ri */
Temp2:= (domain Rj) – (range Rj) /* Temp2 includes the fair dependence sources originated by Rj */
If (Temp1 (Temp2) (FALSE then _CI:= _CI – (Temp1 (Temp2) /* _CI does not include the fair dependence destinations originated by Ri and which are simultaneously the fair dependence sources originated by Rj */.
Replace relations Ri and Rj in set S with a new relation Ri = Ri (Rj , m = m-1, go to step 2.

2.4 CI: = CI (_CI.

3. Calculate the union of all the dependence relations being contained in set S

R := R1 (R2 (… (
[image: image4.wmf]R

'

m

.
Find dependence sources, I, as the domain of relation R; find dependence destinations, J, as the range of relation R. Find all fair dependence sources, FS, as the difference between sets I and J, that is,

FS:= (domain R) – (range R).

4. If CI == FALSE, then FS contains all sources of independent threads, IT: = FS, the end; otherwise go to step 5.

5.Calculate the relation

IR := inverse R,
Calculate a set of dependence sources belonging to dependent threads lying on the paths between all the common iterations, comprised in set CI, and the sources of dependent threads, DT1, using step 5a or 5b

	5a. with applying transitive closure

	Calculate:
 IR+ := Transitive Closure IR,
 DT1:= IR+(CI) /*applying relation IR+ to set CI*/

	5b. without applying transitive closure

	TEMP := CI, DT1:= CI,

L: find a set of dependence sources belonging to dependent threads, TEMP, as:

TEMP := IR(TEMP) /* applying relation IR to set TEMP*/

If TEMP == FALSE, then go to step 6, otherwise

DT1 := DT1 (TEMP, go to L:

6. To find a set comprising sources of dependent threads, DT, calculate the intersection of sets DT1 and FS, that is, DT := DT1 (FS.

7. To find a set including sources of independent

 threads, IT, calculate the difference of sets FS and

 DT, that is, IT := FS – DT.

Proof. When a set of common iterations CI is FALSE, all fair dependence sources are simultaneously the sources of independent threads. When dependence relations originate common iterations, Steps 1 to 5 of Algorithm 1 find all the iterations, DT1, being contained in common threads on the paths lying between all the common iterations, comprised in set CI, and the sources of dependent threads. Sources of dependent threads are found as the intersection of sets DT1 and FS. Sources of independent threads are calculated as the difference between set FS comprising all fair dependence sources and set DT including the sources of dependent threads.

 ■
 Step 5a of Algorithm 1 can be used for loops with both parameterized and non-parameterized bounds at compile- or run-time while step 5b can be applied for loops with parameterized bounds only at run-time because the number of the iterations executed at step 5b is known only at run-time.

4 Finding iterations of independent threads and code generation

In this section, we present how to find iterations belonging to independent threads and how to generate code that scans independent threads and iterations within each independent thread in lexicographic order.

 In the algorithm that follows we: (i) use the denotation Z:={X, Y}, which means that variables of set Z are comprised of variables of sets X, Y and the dimension of set Z is the sum of the dimension of set X and the dimension od set Y, for example, if X: = {[i,j] : 1<i,j<n}, then Y: ={X, X}= {[i,j,i,j] : 1<i,j<n}; (ii) suppose that relation R is represented as R:={[In(R)]-> [Out(R)]: constraints(R)}, where In(R) and Out(R) denote input and output variables of relation R, respectively; constraints(R) denotes constraints imposed on In(R) and Out(R); (iii) suppose that a set S is represented as S:={[In(S)]: constraints(S)}, where In(S) denotes variables of S, constraints(S) denotes constraints imposed on In(S).

 The idea of the algorithm presented in this section is as follows. The first step of the algorithm is to find and unite all such dependence relations which originate independent threads. Let R be a relation representing the output of the first step. Next we form a set whose elements are enumerated by means of two groups of variables. The first group of variables is to scan sources of independent threads (each thread is associated with a correspondent thread source). This group of variables is represented by variables of a set of sources of independent threads, IT, yielded with applying Algorithm 1. The second group of variables is to enumerate iterations in each independent thread. To find iterations being contained in independent threads, we can: i) calculate the range of the transitive closure of relation R applied to set IT; or ii) initialize a working set, Temp, as Temp:= IT and iteratively apply relation R to Temp until R(Temp) (False and merging all sets R(Temp) into one set including all the iterations of threads. It is worth to note that the values of the second group of variables depend on the values of variables enumerating sources of independent threads. For a thread source, variables of the second group enumerate iterations being contained in the thread associated with this source. Let S be a set formed as described above. We can generate code that scans elements of set S in lexicographic order applying any known technique, for example, [2], [6], [7]. Let n be the number of the loop nests in this code. The outer n/2 nests of this code scan sources of independent threads while the inner n/2 nests enumerate iterations of a given thread but the statements in this code have redundant index variables responsible for enumerating sources of threads. To get valid code, we should eliminate these redundant variables in the statements of the code generated on the basis of set S.

Algorithm 2. Finding iterations being contained in independent threads and code generation.

Input: a set comprising sources of independent threads, IT; a set of relations S as the result of executing Algorithm 1 and representing loop-carried dependences: R1, R2,…, Rm(, where m(is the number of relations.

Output: code scanning threads and iterations in each thread in lexicographic order.

1.
Find and unite dependence relations originating synchronization-free threads.

Define R:=FALSE, i=1;

1.1 If the result of the application operation of relation Ri to a set of sources of independent threads, IT, is not FALSE, i.e., Ri(IT) (FALSE, then

R:=R(Ri ;

if i< m(, then i=i+1, goto 1.1.

2.
Calculate set S enumerating sources of independent threads and iterations within each independent thread using step 2a or 2b

	2a. with applying transitive closure

	2.1 Calculate transitive closure of R, R*:={[In(R*)]([Out(R*)]: constraints(R*)}.

2.2 Build set S of the form S: = {[In(R*), Out(R*)]: In(R*):=IT && constraints(IT) && constraints(R*) }

	2b. without applying transitive closure

	2.1 Form set ITD as follows: ITD: = { IT,IT },

2.2 Form relation RD as below:
RD: = {[In(IT), In(R)]->[In(IT), Out(R)]: constraints(IT) && constraints(R) },

2.3 S: = Temp = ITD

2.4 Temp: = RD(Temp)

If Temp (False then S: = S (Temp go to 2.4, else the end

3.
Generate code scanning elements of S in lexicographic order by means of any known technique, for example, presented in [2],[6],[7].

4.
Remove from the loop statements of the code, generated by step 3, the first n/2 variables representing variables In(IT) .

Proof. The first n/2 variables of set S built in step 2a or 2b, where n is the number of all the variables of S, represent the independent thread sources, while the rest n/2 variables of this set are responsible for scanning the thread iterations. The code generated from set S (the result of step 3) scans iterations belonging to threads in lexicographic order starting with the lexicographically minimal thread source, but the loop statements in such a code have redundant index variables. The code, generated from set S and where the input variables of set IT are removed from the loop statements(the result of step 4) does not have redundant index variables in the loop statements and scans threads and their iterations in lexicographic order.

 ■
 Step 2a of Algorithm 2 can be used for loops with both parameterized and non-parameterized bounds at compile- or run-time while step 2b can be used for loops with parameterized bounds only at run-time because at compile-time the number of the iterations executed under step 2b is unknown. The Appendix presents an example of applying Algorithms 1 and 2.

5 Experiments

The algorithms, described in this paper, were implemented using the Omega project software[17]. We have developed a tool that extracts independent threads from perfectly nested loops written in the Petit language[17].

 To evaluate the effectiveness of the proposed approach, we have carried out experiments with the perfectly nested Livermore loops [http: //www.netlib.org/benchmark/livermorec] applying our tool. The Livermore loops are composed of a number of tests which include a wide range of computational structures, samples of floating-point computations taken from many diverse scientific applications.

Table 1 comprises the results of the experiments. For each loop presented in this table, our approach finds independent threads. The first column presents the names of the Livermore loops. All the loops under our experiments have parameterized upper bounds and constant lower bounds. The second column presents the numbers of independent threads extracted by our approach for a correspondent loop. The denotation like Loop(2 (n, (where n and Loop are the upper bounds of a correspondent loop) means that if the condition Loop(2 holds, then the number of independent threads, extracted for this loop by our approach, equals n. The third column indicates whether for a correspondent loop in addition to independent threads there exist dependent threads. The fourth column shows whether for a correspondent loop there exists an affine transformation permitting us to extract independent (synchronization-free) threads. The fifth column presents the times required for extracting independent threads and generating code by means of our tool on a PC computer with the following characteristics: Athlon 1600+(~1400 MHz), RAM-256MB, OS - Windows 2000.
Table 1. Results of the experiments

	Loop name
	The number of indep. Threads
	Dependent treads
	Affine transform
	Loop transform time, s

	K6 – general linear recurrence equations
	Loop=1 (1(n(2 (1
	yes
	No
	0,36

	K7 – equation of state fragment
	Loop(2 (n
	no
	Yes
	0,06

	K8 – ADI integration
	Loop=1 (n
	yes
	No
	0,11

	K9 – integrate predictors
	Loop(2 (n
	no
	Yes
	0,07

	K10 - difference predictors (vec)
	Loop(2 (n
	no
	Yes
	0,08

	K12 – first difference
	Loop(2 (n
	no
	Yes
	0,07

	K21 – matrix*matrix product
	Loop=1 (n(0 (24*n
	yes
	No
	0,20

	K22 – Planckian distribution
	Loop(2 (n
	no
	Yes
	0,07

	K23 – 2-D implicit hydrodynamics fragment
	Loop=n=1 (1
	yes
	No
	0,37

 As follows from Table 1, in the case when for a correspondent loop in addition to independent threads there exist dependent threads which require synchronization (loops K6, K8, K21, K23), there does not exist any affine transformation applied simultaneously to all the statements of the loop body on the whole loop domain and allowing us to extract independent threads while our approach permits us to extract independent threads for these loops. The reason why there does not exist any affine transformation extracting synchronization-free parallelism for those loops is there does not exist any solution to space partitioning constraints [4], [11], [18] built for those loops. This means that the techniques described in [3], [4], [9], [10], [11], [14], [18], [19] and permitting the user to form and apply affine transformations do not permit us to extract synchronization-free parallelism for the Livermore loops K6, K8, K21, K23.

 From the fifth column of Table 1, we may see that the times needed for finding dependence relations and extracting synchronization-free parallelism available in the Livermore loops investigated are not so drastic. Taking into account that the performance of computers is permanently increased, we have the optimism that the approach presented in this paper may be implemented in both academic and industry compilers in the future.

6 Related work

The affine partitioning framework, considered in many papers, for example, [8], [9], [10], [11], [19] unifies a large number of previously proposed loop transformations. Today, it is the most powerful framework for loop transformations allowing us to extract synchronization-free parallelism available in loops with both uniform and non-uniform dependences. However, for the general case of non-uniform loops, this framework does not permit us to extract the entire synchronization-free parallelism available in such loops (see Section 5).

 Paper [12] describes an approach, based on Hamiltonian recurrences, permitting us to extract the entire synchronization-free parallelism. But this approach is applicable only to uniform loops.

 The approach, presented in [16], uses heuristic search procedures and does not guarantee extracting the entire synchronization-free parallelism available in non-uniform loops.

7 Conclusion

In this paper, we presented algorithms permitting us to extract synchronization-free parallelism available in perfectly nested loops. This parallelism is represented with a number of independent threads which can be executed concurrently without synchronization among them. These algorithms permit us to extract more synchronization-free threads than that yielded with well-known approaches including affine transformations. There is the need for modifying the presented approach so that it could be applied for arbitrary nested loops. The approach described in this paper can be used for forming subdomains composed of iterations being contained in synchronization-free threads. To such subdomains, well-known techniques including affine transformations can be applied to extract synchronization-free parallelism. We plan to study these challenges in our future research.

References:

[1] Amarasinghe, S.P., Lam, M.S.: Communication optimization and code generation for distributed memory machines. In: Proceedings of the SIGPLAN'93. (1993) 126-138

[2] Ancourt, C., Irigoin, F.: Scanning polyhedra with do loops. In: Proceedings of the Third ACM/SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press. (1991) 39-50

[3] Banerjee, U.: Unimodular transformations of double loops. In: Proceedings of the Third Workshop on Languages and Compilers for Parallel Computing. (1990) 192-219

[4] Beletskyy, V.: Finding Synchronization - Free Parallelism for Non-uniform Loops”. In Proceedings of the Computational Science – ICCS’2003, Lecture Notes in Computer Science, Springer, volume 2658. (2003) 925-934

[5] Beletskyy V., Siedlecki K.: Finding Free Schedules for Non-uniform Loops”. In Proceedings of the Euro-Par 2003, Lecture Notes in Computer Science, Springer. (2003) 297-302

[6] Boulet, P., Darte, A., Silber, G.A., Vivien, F.: Loop parallelization algorithms: from parallelism extraction to code generation. Parallel Computing, 24, 3-4. (1998) 421-444

[7] Collard, J.F., Feautrier, P., Risset, T.: Construction of do loops from systems of afffne constraints. Construction of Do Loops from Systems of Affine Constraints. Parallel Processing Letters 5. (1995) 421-436

[8] Darte, A., Robert, Y.., Vivien, F.: Scheduling and Automatic Parallelization. Birkhäuser Boston, (2000)

[9] Feautrier, P.: Some efficient solutions to the affine scheduling problem, part i, one dimensional time. International Journal of Parallel Programming 21. (1992) 313-348

[10] Feautrier, P.: Some efficient solutions to the affine scheduling problem, part ii, multidimensional time. International Journal of Parallel Programming 21. (1992) 389- 420

[11] Feautrier, P.: Toward automatic distribution. Journal of Parallel Processing Letters 4. (1994) 233-244

[12] Gavaldà,R., Ayguadé E.,, Torres J.: Obtaining Synchronization-Free Code with Maximum Parallelism. Technical Report LSI-96-23-R, Universitat Politècnica de Catalunya. (1996)

[13] Griebl, M., Lengauer. C. : Classifying Loops for Space-Time Mapping. In Proceedings of the Euro-Par 1996, Lecture Notes in Computer Science, Springer. (1996) 467-474

[14] Huang, C., Sadayappan, P.: Communication-free hyperplane partitioning of nested loops. Journal of Parallel and Distributed Computing 19. (1993) 90-102

[15] Kelly W., Pugh W., Rosser E. and Shpeisman T.: Transitive Closure of Infinite Graphs and its Applications, International Journal of Parallel Programming, v. 24, n. 6., December. (1996) 579-598

[16] Kelly W., Pugh W.: Minimizing communication while preserwing parallelism. In the proceedings of thw 1996 ACM International Conference on Supercomputing. (1996) 52-60

[17] Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The omega library interface guide. Technical Report CS-TR-3445, University of Maryland. (1995)

[18] Lim, W., Lam, M.S.: Communication-free parallelization via affine transformations. In: proceedings of the Seventh workshop on languages and compilers for parallel computing. (1994) 92-106

[19] Lim, W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine transforms. In: Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. (1997)

[20] Pugh, W., D.Wonnacott: An exact method for analysis of value-based array data dependences. In: Workshop on Languages and Compilers for Parallel Computing. (1993)

Appendix. Example of applying Algorithms 1 and 2.

Let us illustrate the presented algorithms by means of the following loop example.

for i=1 to 10 do

 for j=1 to 10 do

 a(j+4,j+1) = a(i+2*j+1,i+j+3)

 endfor

endfor

For this loop, Petit generates the following dependence relations

PR1 := {[i,5] -> [i,i+7] : 1 (i (3,

PR2 := {[i,5] -> [i',i+7] : 1 (i < i' (10 && i (3},

PR3 := {[1,9] -> [2,5] } union {[2,10] -> [3,5] },

PR4 := {[i,j] -> [j-7,5] : 1 (i (j-8 && j (10},

PR5 := {[i,j] -> [i',j] : 1 (i < i' (10 && 1 (j (10}.

After removing redundant dependences, we have the following relations:

R1 := {[i,5] -> [i,i+7] : 1 (i (3},

R2 := {[i,5] -> [i',i+7] : 1 (i < i' (10 && i (3},

R3 := {[i,j] -> [j-7,5] : 1 (i (j-8 && j (10},

R4 := {[i,j] -> [i+1,j] : 1 (i (9 && 1 (j (10}.

Applying Algorithm 1, we yield a set S including relations R1, R2, R3, and R4 as well as two sets, DT and IT, containing the sources of dependent and independent threads, respectively,

DT := {[1,j]: 8 (j (10} union {[1,5]},

IT := {[1,j]: 6 (j (7} union {[1,j]: 1 (j (4}} = {[i,j]:(i=1 && 6 (j1 (7 OR i=1 && 1 (j (4)}.

After executing step 1 of Algorithm 2, we have

R= R4 := {[i,j] -> [i+1,j] : 1 (i (10 && 1 (j (10}.

The calculations of step 2 of Algorithm 2 are as follows

	2a) with applying transitive closure

	2.1
R* := {[i,j] -> [i',j] : 1 (i < i' (10 && 1 (j (10} union {[1,j] -> [1,j] : 1 (j (10}

2.2
S := { [i,j,i',j] : (1 (i < i' (10 && 1 (j (10) && (i=1 && 6 (j (7 OR i=1 && 1 (j (4) }union {[i,j,i',j] : (i=1 && i'=i && 1 (j (10) && (i=1 && 6 (j (7 OR i=1 && 1 (j (4)};

	2b) without applying transitive closure

	2.1
ITD := { [1,j,1,j] : 6 (j (7 OR 1 (j (4 }

2.2
RD := {[i1,i2,i,j] ([i1,i2,i+1,j] : 1 (i (9 && 1 (j (10}

2.3
S := Temp = ITD

2.4
Temp := RD(Temp) – S = {[1,In_2,2,In_2]: 6 (In_2 (7} union {[1,In_2,2,In_2]: 1 (In_2 (4}

Since Temp (False S := S union Temp = {[1,j,1,j]: 6 (j (7} union {[1,j,1,j]: 1 (j (4} union {[1,j,2,j]: 1 (j (4} union {[1,j,2,j]: 6 (j (7}goto 2.4

Repeating step 2.4 until Temp(False, we get a set S which represents the same elements that the set S yielded with applying step 2a.

Applying steps 3 and 4 of Algorithm 2 and using the codegen function from the Omega calculator[17], we yield the following code representing sources of independent threads and their iterations
par for(i = 1; i <= 4; i++) {

 a(i+4,i+1) = a(1+2*i+1,1+i+3)

 for(j = 2; j <= 10; j++)

 a(i+4,i+1) = a(j+2*i+1,j+i+3)

}

par for(i = 6; i <= 7; i++) {

 a(i+4,i+1) = a(1+2*i+1,1+i+3)

 for(j = 2; j <= 10; j++)

 a(i+4,i+1) = a(j+2*i+1,j+i+3)

}

 It is worth to note that the code above scans only independent threads and iterations within them. To get the code that is semantically equal to the original loop, we should add to the code above a code which scans dependent threads and iterations in each thread in lexicographic order.

_1133868781.unknown

_1160299577.unknown

