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Abstract: - In this paper, we propose an efficient algorithm for highlight removal in spectral images. According to the Dichromatic Reflection Model spectral data is characterized by highlight and body reflection. The considered technique is based on a mixture model of probabilistic principal component analyzers (PPCA) that is used for clustering the data into the highlight and body-reflection clusters and for computing the eigenvectors of the covariance matrices of the clusters. The K-nearest-neighbor algorithm (KNN) replaces highlight pixels with body-reflection pixels, which leads us to highlight removing in spectral images. We present the experimental results confirming the method's feasibility.
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1   Introduction

In computer vision the reflection models are often used for image analysis and for getting color constancy. A color constancy algorithm removes a color effect produced by illumination and gives the possibility to see the actual color of the surface [2]. This is important for Internet museums (E-museums), Internet shopping (E-commerce) and so on. Since a highlight color relates to a color of the light source, the highlight removal technique supports the concept of color constancy. 
For highlight analysis the global and local approaches are used. The global approach uses the whole image for clustering all color regions in the RGB space and for removing highlight in each cluster [5], [13]. However, these approaches are computationally demanding [10]. To reduce the complexity of the task a two-dimensional representation of the image is proposed. This includes a chromaticity histogram (the uv-space) [10] and a spherical polar coordinate system of the RGB space [4]. But these methods are not relevant for representing spectral data. 

The local approach is implemented based on either analysis of a global data cluster for a segmented colored object or analysis of the highlight and body-reflection clusters which form the global cluster. In the first case the algorithm represents a line fitting method and uses a recursive procedure to extract the line segments [9], [8]. In the second case the local approach uses the results of segmentation [5], [3]. In this case the small window placed on the object's body gives a description of the body-reflection cluster while the window at the boundary and the interior of a highlight region provides the knowledge of a highlight reflection. The algorithm then refits and determines the body and highlight lines using the first eigenvector of the covariance matrix of each cluster. Similar results are obtained with a photometric stereo approach used for removing highlight in color images [10]. The local methods using principal component analysis perform well in comparison with methods based on global cluster analysis. They are less sensitive to shape variation of clusters and bloomed pixels [5]. 

Unlike the discussed methods working in the RGB space where the data dimension is not higher than three, the method for the parameter estimation of a reflection model from a spectral image including six components is proposed in [12]. Similarly to a local approach the body-reflection cluster is extracted from the global cluster based on iteratively splitting and merging the data and computing the first principal component vector of the covariance matrix of the body-reflection cluster.    

In this paper, a method similar to the local approach with an analysis of the global cluster made for spectral images is considered. The machine learning algorithms for clustering give the advantages in this case. Since both the body-reflection and highlight clusters are approximately linear, a mixture model of PPCA fitting the data in a piecewise linear manner gives a good representation of the data [11]. In addition to each local model which fits each local cluster the eigenvectors are defined. The eigenvectors and the K-nearest-neighbor algorithm are used for data mapping to represent a whole image region. The method works well with multidimensional data. 

It is assumed that the segmentation of the entire colored object is made in advance and the interreflection regions are excluded from the analysis. Our purpose is to generate the body- reflection image which reproduces the image having highlight without highlight. 
As a first step, this task involves a separation of the pixels into reflection components. The problem is solved based on the Dichromatic Reflection Model, which can be used for most materials and describes the pixels of the colored objects through a mixture of the body-reflection and highlight components.
2   Dichromatic Reflection Model
According to the Dichromatic Reflection Model the pixels of a colored object mapped in the RGB space (RGB histogram) form a planar-like cluster [3]. This cluster in itself consists of two line-like clusters, one of which is a body-reflection cluster and the other is a highlight cluster. Thus, the density model of data represents a mixture of two densities (components) and each component density is characterized by a large first eigenvalue. A similar data structure including the dichromatic plane with two linear clusters is observed in multidimensional data of spectral images [1].

It is assumed that the analyzed objects have a roughly constant hue. These objects can be segmented in advance if the image is a composed image. The dichromatic reflection model represents the color of a pixel in the spectral space as follows [10]:
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 denote the surface reflection color spectrum and the body-reflection color spectrum, respectively, 
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 is a wavelength. The scaling factors depend on the viewer direction, the object surface normal and the illumination direction.

Taking into account the data structure in a multidimensional space a mixture model of PPCA for the highlight analysis of spectral images is used. The mixture model of PPCA is a density model and models a nonlinear structure with a collection of local linear models [11]. Each local model represents Gaussian distribution with a covariance matrix defined by PPCA. The mixture model of PPCA performs well for data that is piecewise linear.
3   Highlight Removal Technique
In this section, the highlight removal technique for spectral images is considered. The technique involves the mixture model of PPCA, classification based on a maximum of posterior probabilities and the K-nearest-neighbor algorithm. 
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are spectral components.

PPCA uses the latent variable model where the observed variable 
[image: image14.wmf]x

 [11] is presented by
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The mixture model of PPCA [11] uses a linear combination of an 
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The mixture distribution for 
[image: image30.wmf]2

=

M

 components corresponding to highlight and body-reflection components is as follows: 
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where 
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 is a mixing coefficient. The log-likelihood of Eq.4 is maximized using an expectation-maximization algorithm (EM) to fit the model to the data. The EM algorithm computes the responsibility of each component to generate the data point and re-estimates the mixing coefficients, the means and the covariance structure. 

After a mixture of the PPCA model has been fitted to the data set, each data point in each component is classified based on a maximum of the posterior probability value 
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When all data points are divided into the two clusters, the data point with a maximum norm in each cluster is calculated and this value is used to define the highlight 
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For the sake of simplicity, if 
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The next step involves the mapping of body-reflection points onto the first eigenvector of the covariance matrix of the body-reflection cluster. An eigendecomposition of the covariance matrix 
[image: image45.wmf]b

C

 of the body reflection cluster is computed to define a 
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, the columns of which are the eigenvectors. The mapping is done as follows: 
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. Then, the data points 
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 are mapped onto the subspace spanned by the first eigenvector of the covariance matrix of the body-reflection cluster using the KNN algorithm. This projection is skewed and defined by the positions of the point being projected and the K-nearest-neighbors of 
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For the KNN algorithm the number of classes is set to be equal to the number of points of the body reflection cluster. If the number of nearest-neighbors is 
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 for the KNN algorithm then 
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 classes will be the winning classes. The Netlab implementation strategy of the KNN algorithm [6] used in this study randomly selects one class from the winning classes. This improves the visual quality of the image because the possible false edges are destroyed.

This approach gives better results than when the highlight data points are mapped using the K-nearest-neighbors of the body-reflection cluster because the method removes a noise influence. This will be shown in Section 4. 

Fig.1 illustrates the basic steps of the algorithm. Fig.1(a) shows the data (the image cherries) representation for the two image components. Fig.1(b) and (c) demonstrate the body-reflection and highlight clusters segmented by the mixture model of PPCA. Fig.1(d) illustrates the KNN mapping of the highlight data onto the first principal component of  the covariance matrix of the body-reflection cluster. 

[image: image58.wmf]
Fig.1. a) The data representation for the two image components. b) The body-reflection cluster. c) The highlight cluster. d) The highlight data mapping onto the first eigenvector of the covariance matrix of the body-reflection cluster

The method is described by Algorithm 1 intended for removing highlight in spectral images. The algorithm is implemented using Matlab and a Netlab toolbox [6], [7].
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Algorithm 1. The highlight removal algorithm
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Input: the observed vectors 
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. For a mixture model of PPCA: a number of principal components equal to one for each PPCA, a number of PPCA densities 
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Do:
1. Fit the mixture model to the data:
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2. Classify each data point:
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3. Define the reflection clusters (
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4. Compute an eigendecomposition of 
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5. Map 
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6. Reconstruct the data: 
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7. Map each highlight data point of 
[image: image73.wmf]h

x

 onto the first eigenvector using the KNN algorithm and the 
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 nearest-neighbors of  
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Reproduce: the spectral image with a synthetic part instead of a highlight region in a suitable color system (e.g. RGB CIE 1931).
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4   Experiment
In the experiment two spectral images cherries and pens are considered. Only three regions are analyzed in the images. They represent the colored objects (cherries, a blue pen and a green pen) with highlight. The regions are segmented in advance. All images are acquired in the visible range of wavelengths from 380 nm to 780 nm and the spectral components are taken at 5 nm apart. Thus the spectral dimension consists of 81 components and the spatial size is 103
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173 and 100
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141 for cherries and pens, respectively. 

In the first experiment the part of the image cherries  is tested to show the consequent visual improvement of the result using the following methods:

· The highlight data points are mapped using the one-nearest-neighbor of the body reflection cluster (Fig.2(a)). 

· The highlight data points are mapped using the ten-nearest-neighbors of the body reflection cluster (Fig.2(b)).

· The highlight data points are mapped onto the subspace spanned by the first eigenvector of the covariance matrix of the body-reflection cluster and the ten-nearest-neighbors are used (Fig.2(c)).
The result enhancement is clearly seen for the second method in comparison with the first one. The advantage in the use of the third method is better seen on the monitor's screen.
            a                           b                           c 
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Fig.2. The scaled regions of cherries with removed highlight. a) The first method. b) The second method. c) The third method 

In the second experiment the highlight is removed in the spectral images using Algorithm 1. Fig.3 and Fig.4 show the results for cherries and pens. The visual quality of the results is relatively good. The highlight region for a red pen is not very strong and the algorithm does not succeed in this case.

Fig.3. The original image cherries and the image with removed highlight  

4   Conclusion

In this paper, the algorithm for removing highlight in spectral images is proposed. The algorithm based on machine learning is intended for the automated work in a spectral space. The algorithm efficiently separates data into body-reflection and highlight clusters and provides the highlight data projection for generating color pixels. In general, the algorithm performs well and the visual quality of the results is relatively good.


Fig.4. The original image pens and the image with removed highlight  

In highlight removal there is no quantitative measure of quality. The technique also depends on data that affects the algorithm performance. However, it is supposed that the considered method can be useful in many applications that require color constancy. 
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