
Course Design, Representation and Browser for Web Based Education

KUNAL CHAWLA
Department of Information Technology

Indian Institute of Information Technology
Allahabad, Uttar Pradesh

INDIA

Abstract: - Web based Education is always looked upon as a fascinating field in Distant Education. A lot
have been discussed in using computer technology in the delivery of education. The paper deals with the
development of a protocol for the course or learning material in a XML format which can be saved in XML
databases. The paper also showcases the development of a module which provides a browser for displaying
the learning components and simplifying the e-education for the learners. A learning component can be a
text or image or a video clip etc. Apart from the display of learning components, the module provides
additional features which can make the e-learning more interactive and easier. The module also involves a
tool for providing communication between the learners and the teachers or professors through a messenger
application. Therefore the module tries to provide an effective distance learning tool by covering few of the
issues of distant learning

Key-words: - Distance Learning, Learning Management Systems, Learning Materials, Computer Assisted

1 Introduction
 This distance education tool for display and
representation of learning material not just aims at
providing an interface for display of various
learning components but also provides an interactive
application for overall effective learning of a
learner. It also showcases a design for the learning
material or course file in XML. The course material
exists as XML files along with the various learning
components and thus taking the advantage that
XML provides. The learning components may vary
from simple text components like rtf files or images
to audio/video files. Along with that the application
provides the user with a facility to save notes like in
a class room lecture environment. Also the user can
bookmark the important pages and can visit them in
course of learning. The application also provides the
course material to be displayed as a slide show.
There are many other features like searching for
keywords in the specified course etc. which shall be
covered with the course of this paper. Thus this
application provides the user a more interactive
browser than web browser, specifically developed
for course or learning material files which exist in
XML format.
From the course developer/author point of view this
application provides a feature to convert the course
in XML format to the course in HTML format
which can be readily put on web servers and thus the

course can be accessed through the most
conventional ways i.e. a web page.
The course that exists in the form of XML files
needs to parsed and then displayed. For parsing
SAX API is used. The displayable components or
the learning components are linked to the XML
files. There is also a tool for communication
between the application users (like students) and the
course developers (like teachers) etc.. For this
purpose a messenger tool is developed and added to
this module. The messenger uses Java Technologies
like Java RMI to interact with server, Sockets to
interact with forwarding program and JDBC to
interact with database and this stands as an effective
communication tool. The intricacies of messenger
are also covered in the course of paper.
There are few other concepts which are not
implemented but are still under active discussion
and their implementation and integration with the
current application is a part of future work.
The comprehensive solution to web based education
consists of implementation of many modules and
this paper throws light on the one of such modules.

2 Major Goals
• Design of an optimized course format in

XML.

mailto:kchawla_01@iiita.ac.in

• The learning components to be displayed
must cover all major formats of learning
components like audio, video, images, text,
rtf etc.

• Providing an interactive and easy to learn
environment to the user for effective
learning.

• Development of a messenger application
which can provide the communication not
only among the users but also among the
users and course authors.

3 The Course File structure

3.1 The Basic Course Structure
 The Course structure is organized in a very
efficient way. Accessing the main course file allows
other sub-files to be accessed. The Course file
(XML file) consists of many lesson file references in
addition to the various attributes of the course. A
Lesson (XML file) contains many screen file
references in addition to various attributes of the
lesson. On the same grounds screen file contains
information regarding the display page and
references to various components.
The learning components which can be displayed
include audio, video, image, html, rtf etc. The
hierarchy (Structure) of the files is as shown below

Figure 1: Hierarchy of course file structure

3.2 The Course Structure in Detail

 The course file contains information about
the course like the authors, copyright holder, name
of the course etc. For every attribute, a tag is
reserved, whose content is picked up while parsing
the file.

For eg. For authors the XML syntax is

 <authors>
 kunalChawla
 </authors>
The Course file contains an important tag: “lesson-
path” who’s content is the relative path to the lesson
xml file. So, we can include many lessons in a
course file and that can be attached to the course by
just adding their relative paths.
The lesson file contains attributes like name of the
lesson, description etc. whose content contain their
respective information. The tag which links the
lesson file to screen files is: “screen-path” and its
role is similar to “lesson-path” in Course file.
The screen XML file contains the information
regarding the frames which corresponds to a
component that should be displayed. Each frame-
path tag in the screen file has attributes like
coordinates, length, breadth and the most important
are the type and path of file which contain
information regarding type like (audio/video, html,
image etc) and the relative path respectively, for
describing the way component should be displayed.
Following are some samples of the files of the
course material.
 Course1.XML
<course>
 <description>
 Course1
 </description>
 <authors>
 kunal Chawla
 </authors>

 <display-name>
 Java
 </display-name>
 <copyright>
 kunal Chawla
 </copyright>
 <lesson-path>
 /Lesson1.xml
 </lesson-path>
 <lesson-path>
 /Lesson2.xml
 </lesson-path>
</course>

Lesson1.XML

<lesson>
 <description>
 Lesson1
 </description>
 <display-name>
 XML
 </display-name>
 <screen-path>
 /Screen1.xml
 </screen-path>
 <screen-path>
 /Screen2.xml
 </screen-path>
</lesson>

Screen1.XML

<screen>
 <description>
 Screen1
 </description>
 <display-name>
 basics of XML
 </display-name>
 <frame-path x="0" y="10" width="137"
 height="581" type="image"
 path="/bgStrip.jpg">

 </frame-path>
 <frame-path x="147" y="10"
 width="300" height="700"
 type="rtf" path="/rtf1.rtf">
 </frame-path>
 <frame-path x="500" y="10"
 width="300" height="700"
 type="text" path="/txt1.txt">
 </frame-path>
</screen>

 These tags which are mentioned are just the
basic tags. The customized application can have as
many tags as possible and a code can be developed
for the browser application to decipher the
information contained in those tags of the course
files.

4 The Content Display Module
(Browser for Course)

This module is divided into phases

1. Parsing of XML file
2. Building up the module
3. Calling various functions of the module e.g.
Display, search

Figure 2: Phases of Content Display Module

The Course XML file to be read is passed to the
module, where it is parsed using the SAX API .The
SAX API is the most basic of all APIs which gives
the maximum freedom to the developer, but requires
maximum programming too. As the course file
contains path to lesson files and lesson file contains
path to screen files, the parser is programmed to
parse these files too. On encountering a particular
tag an event is called. So the code pertaining to a tag
is appended there.
 The parser can be extended by adding rules for
various other tags which we want to add in XML
files. Thus we can make a universal parser for the
XML, by just defining tags and the execution code
for that. The execution code for *-path tags works in
the following way. The XML file corresponding to
that particular tag is opened up and is parsed in a
similar way described above and when it is parsed,
the control returns back to main file.
As the tags are encountered a course model is built
up and all the corresponding variables are set which
occurred as tag content or tag attributes in the XML
files. The model has the following structure.

Figure 3: Hierarchy of the Course Model

The hierarchy is very clear from the above diagram.
Here each node corresponds an object of the classes
from {Course, Lesson, Screen, Frame,
Components}. The classes of the model provide
functionality and can be harnessed by the call of
functions.

The functions include getting the display content,
searching, building up HTML representation etc.
The course file when invoked for a function which
depends on other sub components: lessons and
screens like getting display content builds up its own
display content and calls its subcomponent functions
for display which in turn asks their subcomponents
for display. As a result whole tree structure is
invoked and the results are combined and returned
by the top most function. This feature makes the
model an ideal one.

5 Features

1. Search: search searches for a keyword in the

specified tag like description, type etc in the
model and returns the result in form of table
where each tuple references a screen.

2. Print: prints the current contents of the screen.
3. Full Screen: Full screen changes the current

display settings and shows the screens in form as
slide show. There are buttons for moving to next
and previous screens.

4. HTML preview: This function builds up the
HTML code for each of the displayable parts of

the screen and then calls up windows API to
display the html code in the web browser.

5. Tree representation: Each course object call its

lesson objects and each lesson in turn calls its
screen objects to form a JTree. This is a very
efficient way of representation of the whole
course and also it is useful for the user for
navigation through the course.

6. Navigation :
 Following functionalities are added for
navigation
 Next: for moving to the next screen
 Previous: for moving to the previous screen
 Top: for moving to the first screen
 Bottom: for moving to the last screen
7. Generate HTML book: This feature generates a

separate ready to be delivered HTML document
book which has a navigation tree format for
course lessons, screen etc. This feature provides
a mechanism to convert the XML course
material to HTML format which can be readily
put on web servers and the learning material can
then be accessed through web pages.
 Every component is displayed on a JPanel
in the application user interface. But on the
HTML page, the HTML component and images
are displayed by just appending their HTML
script. The rtf and media components are
displayed using an applet and putting the
corresponding applet script to the main HTML
script of the page.

8. Notes: While reading the course the reader wants
to make certain notes. For this purpose, there is a
facility of making notes for every screen and
saving and editing them.

9. Bookmarks: You can add a screen to the list of
bookmarks and the bookmarks information is
saved in the workspace/bookmarks for that
particular course. So every course has its set
of bookmarks.

10. Communication: The messaging application
discussed in the course of paper provides the
instant communication between the learners and
the authors of the learning material.

6 Messaging application

 Communication is an integral part of
learning. The Messenger Application is utilized for
communication among course developers and
learners. The Messenger Application includes

communication via text messages and diagrams
involving basic geometrical figures like rectangle,
ellipse and line.

6.1 Messenger Architecture

Whole Messenger Application involves 4 sub-
modules.
1. Server
2. Database
3. Forwarding Program
4. Client

In the following paper the design of each module is
illustrated and further their implementation is also
explained.
The design is made in order to make the
communication reliable and fast enough under
hardware constraints.

The interaction between the server, the client and
the forwarding program takes place using specific
protocols. Each message is coded using a
specialized protocol depending on its purpose,
before leaving for the destination.

Figure 4: Structural Architecture of Messaging
Application

6.2 Design and Implementation

The server, forwarding program and the client is
implemented in Java. The Client communicates with
a peer via the forwarding program. The clients and
forwarding program interact using TCP/IP Sockets.
The forwarding program interacts with the server
using jdbc, while the server and the client
communicate using JAVA RMI.
In order to use the application the user first needs to
create an account with the Server. This includes
form filling and sending that to the database. After
the creation of the account user need to sign in.
In the sign in procedure user is authenticated and a
session key is generated which is required in further
interactions with the server and the forwarding
program.
The user can add/delete/update friend’s information
and maintain the friend list.

The Database contains the information regarding the
online status of the user, the friend list of the user,
offline messages etc.
The Forwarding Program is a program which allows
the clients to communicate with each other using
TCP sockets. The client sends the message
addressing the user to the forwarding program
which is running on a machine with a known IP
address.

The Forwarding program after receiving the
message from a user forwards the message to the
addressee. If it is unable to send the message to the
required host then it returns an error message to the
Client containing the same message. Client then
tries to send the message using the Server, the server
then tries to send the message and if it is unable to
do so then it saves the message as an offline
message.
The offline messages addressed to a particular client
are then retrieved by the Client when he logs in. The
Server basically provides a call to retrieve the
offline messages and various other things. So
retrieving information from the server highly
depends on the design of client.

Now the client design should be such that it
effectively and efficiently utilizes the functionality
provided by the server.

Figure 5: Structural Architecture of Server

6.2.1 Server and Database

The ‘client-server talk server’ receives requests from
the clients and passes them an object of the ‘client
and server talk implementation’, which provide the
various functionalities to the client. The ‘client and
server talk implementation’ in turns uses
functionalities of ‘server data talk’ which provide an

interface between database and the ‘client server
talk implementation’.
The Database consists of five tables which adhere to
the requirements of the application.
The Main table maintains the user id and passwords
of all the users who have an account along with
general information regarding the user like name,
gender, age etc. The Online_Users table has
information related to all the users who are online at
that time. A special key is generated each time the
user logs in. This is key is unique for each session
and is stored in this table along with the ipaddress of
the user. There are separate tables for storing the
friend lists and the offline messages of each user.
The database id designed in such a way so that there
is no redundancy of data and it follows all the
referential integrity constraints. This keeps the
information correct and up to date.
The server is designed to in order to provide all sorts
of functionality to the client i.e. Creating a new
account, managing of friend list, retrieval of offline
messages etc.
The Database can be further expanded as per the
needs of the application.

Figure 6: Structural Architecture of Forwarding
Program

6.2.2 Forwarding Program

The clients and forwarding program interact using
TCP/IP Sockets. The requests from the clients enter
a queue maintained by the forwarding program. The
forwarding program takes each element from the
queue and verifies the userid and corresponding
session key against those values retrieved from the
database. If these values match then a unicast thread
is created which forwards the message to addressed
userid by finding out his ipaddress from the
database. If these values are not matched then a
message is passed back to sender about the invalid
session key.

And if the addressed userid is offline (i.e. program
was unable to fetch the ipaddress of addressee from
the database) or if the ipaddress is unavailable on
the network then the message is forwarded back to
the sender using a unicast thread.
The forward program data talk has read only grants
for the database that adds to the security.
We can have a number of such programs running on
different machines at different locations. All these
machines will have a universally known ipaddrress.
This reduces the load on the server and hence
increases the efficiency of the application.

Figure 7: Structural Architecture of Client

6.2.3 Client

On the client side messages are received using
TCP/IP Socket interface and are added to the
receiver queue. Messages are taken from the queue
one by one and are then decoded by the receiver
protocol. The tasks are then assigned to Worker
Threads which carry out the work desired by the
corresponding protocol string(the encoded
message). A task can be to perform the job of
displaying them through the GUI.
Similarly on the sending side Work Flow Threads
take messages from the user through the GUI. These
messages are then encoded by the sender protocol in
a particular format which considers the addressee,
the function required etc. Then they enter the
sending queue after which they are sent to the
forwarding program using TCP/IP Socket interface.
The client retrieves the reference to the server object
using JAVA RMI. The various functionalities
provided by the server are called using this
reference.

6.2.4 Protocol String
The protocol string is the data that is exchanged
among the clients.
CLIENT TO CLIENT MESSAGE (via Forwarding
Program)

 key SENDER’S ID DESTINATION’S

ID CLIENT to CLIENT MESSAGE

This is the message that is sent to the Forwarding
Program. Here the “key” is padded to 6 characters,
“Sender’s ID” is padded to 15 characters and
“Destination ID” is padded to 15 characters.

CLIENT TO CLIENT MESSAGE (after processing
of forwarding program)

TYPE SUB-TYPE1 SUB-
TYPE2 SUB-TYPE3 SENDER’S
ID TEXT

TYPE : 1 CHARACTER
SUB-TYPE1 : 1 CHARACTER
SUB-TYPE2 : 1 CHARACTER
SUB-TYPE3 : 1 CHARACTER
SENDER’S ID: 15
CHARACTER
TEXT : 500
CHARACTERS
TOTAL: 519 CHARACTERS

6.3 Messenger Features
Reliability
The forwarding program after receiving the message
from a user forwards the message to addressee. If it
is unable to send the message to the required host
then it returns an error message to the Client
containing the same message. Client then tries to
send the message using the Server, the server then
tries to send the message and if it is unable to do so
then it saves the message as an offline message.
If the same user logs in at different machine, his
previous session is destroyed.
Security
No client is allowed to access the ipaddress of any
peer. Only the forwarding program’s ipaddress and
server’s ipaddress are revealed.
Incase of forwarding program, we are using a
database user with read only grants. But in case of
server we have a database user with access restricted
to desired amount.
This definitely adds security features to database.

Drawing Board

The drawing board provides the facility to express
and convey those things which can’t be conveyed by
just plain text messages

7 Comparisons with other similar
Applications

The conventional ways for delivery of education
have been through web pages. As a result the
learning process hasn’t been interactive enough. By
making an application like this for the e-learning
that covers up all the features of web pages and
provide interactivity at the same time is a better way
of providing education via computer technology.
The module provides a messenger for interaction
among the learners and authors of the course which
is very integral part of learning.
And, the design of course in XML is an evident
advantage over the course materials existing as
HTML pages.

8 Conclusions

The implementation of this module for web based
education was a success as it provided the tool to
view course which exists in XML format. It also
provided the much needed interactive application for
the user. It has a capability of displaying media,
image, rtf and HTML files. The feature that converts
the course to HTML book which can be easily
dispatched on a web server is one of the very
appreciable features. An effective communication
with users and course authors via Messaging
Application makes this distance education tool very
impressive and above par, when compared to other
distant education tools

9 Future Work
For making a comprehensive application, much
more work is still to be done. Some work is to be
done to make the browser for course material
capable of conducting online examination which can
be interactive with the student and at the same time,
it can assess the student in terms of time spent on a
particular question, the approach taken by a student
etc. i.e. addition of artificially intelligent techniques
to assess the student.
The application right now covers the display of
limited learning material formats. So, work has to be

done to cover the display and presentation of other
learning component formats like animations in flash
etc.
The work in Web Based education is quite extensive
and deals with the development of many modules
like NLP, Text to Speech, Document Summarizers,
Mathematical Toolkit etc. The stitching together of
all these separate modules to build up a
comprehensive package for web based education is
also a part of future work.

10 On Running the Application

Figure 8: The look and feel of the Application

11 References
Cay S. Horstmann ,Gary Cornell “Core Java 2 “

Advanced Features Vol 2 , Pearson Education
Asia, Second Indian Reprint ,2000 , pp 147-312.

Cay S. Horstmann ,Gary Cornell “Core Java 2 “
Vol 1 , Pearson Education Asia, Second Indian
Reprint ,2000

The Java™ Web Services Tutorial Copyright ©
2003 Sun Microsystems, Inc., 4150 Network
Circle, Santa Clara, California 95054, U.S.A.

Java™ 2 SDK, Standard Edition ,Version 1.4.2

	Introduction
	Major Goals
	The Course File structure
	The Basic Course Structure
	The Course Structure in Detail

	The Content Display Module (Browser for Course)
	Features
	Messaging application
	Messenger Architecture
	Design and Implementation
	Server and Database
	Forwarding Program
	Client
	Protocol String

	Messenger Features

	Comparisons with other similar Applications
	Conclusions
	Future Work
	On Running the Application
	References

