The ICM in the DLM algorithm

YOUSEF KILANI
Prince Hussein bin Abdullah Information Technology College
Al al-Bayt University
Jordan
and
Abdullah Mohd Zin
Faculty of Information Science and Technology
Universiti Kebangsaan Malaysia
MALAYSIA
y_kilani@yahoo.com and bmz@ftsm.ukm.my

September 4, 2004

Abstract:- Local search methods for solv-
ing constraint satisfaction problems such as
GSAT, WalkSAT and DLM starts the search
for a solution from a random assignment. Lo-
cal search then examines the neighbours of this
assignment, using the penalty function to de-
termine a better neighbour valuations to move
to. It repeats this process until it finds a solu-
tion which satisfies all constraints.

ICM [8] considers some of the constraints as
hard constraints that are always satisfied. In
this way, the constraints reduce the possible
neighbours in each move and hence the overall
search space.

We choose the hard constraints in such away
that the space of valuations that satisfies these
constraints is connected in order to guarantee
that a local search can reach a solution from
any valuation in this space.

We show in this paper how incorporating
learning in the island traps and restart im-
proves the DLMI algorithm [8].

Keywords: The DLM local search algo-
rithm, SAT problems.

1 Introduction

A constraint satisfaction problem (CSP) [3] is
a tuple (Z,D,C), where Z is a finite set of

variables, D defines a finite set D,;, called the
domain of z, for each x € Z, and C' is a finite
set of constraints restricting the combination
of values that the variables can take [8]. A
solution is an assignment of values from the
domains to their respective variables so that
all constraints are satisfied simultaneously [8].
CSPs are known to be NP-hard in general.

Local search techniques, for example
GSAT [7], WalkSAT [4, 1], DLM [10, 11],
the min-conflicts heuristic [2], GENET [5]
and ESG [6] have been successful in solving
large constraint satisfaction problems [8]. In
the context of constraint satisfaction, local
search(LS) first generates an initial variable
assignment (or state) before making local
adjustments (or repairs) to the assignment
iteratively until a solution is reached. Local
search algorithms can be trapped in a local
minimum (trap), a non-solution state in which
no further improvement can be made. To
help escape from the local minimum, GSAT
[7] and the min-conflicts heuristic [2] use
random restart, while Davenport et al. ([5]),
Morris ([9]), DLM and ESG [6] modify the
landscape of the search surface.

Local search algorithms traverse the search
space to look for solutions using some heuris-
tic function. Schuurmans and Southey [6] in-

depth, mobility and coverage. Depth mea-
sures how many clauses remain unsatisfied as
the search proceeds, mobility measures how
rapidly a local search moves in the search
space, and coverage measures how systemati-
cally the search explores the entire space. The
efficiency of a LS algorithm depends on three
things [8]: (1) the size of the search space
(the number of variables and the size of the
domain of each variable), (2) the search sur-
face (the structure of each constraint and the
topology of the constraint connection), and
(3) the heuristic function (the definition of
neighbourhood and how a “good” neighbour
is picked). The Island Confinement Method
(ICM) aims to reduce the size of the search
space [8]. DLMI [8] is the DLM algorithm af-
ter incorporating the ICM in it. In this paper,
we introduce a new version of DLMI.

The rest of this paper is as follows. Section 2
gives the necessary background and definitions.
In this section, we introduce the SAT prob-
lems, LS and the DLM algorithm. Section 3
shows the SAT translated from a CSP and the
data of the experiments presented in this pa-
per is this kind of SAT. Section 4 presents the
notion of the island confinement method. Sec-
tion 5 presents the DLMI2004 algorithm and
the results of this algorithm. Last section gives
conclusion remarks.

2 Background and Definitions

In this section, we illustrate some terminolo-
gies we use in this paper and we illustrates the
DLM algorithm.

Given a CSP (Z,D,C). We use var(c) to
denote the set of variables that occur in con-
straint ¢ € C. If |var(c)| = 2 then c is a binary
constraint. In a binary CSP each constraint
¢ € C is binary. A waluation for variable set
{z1,...,2,} C Z is a mapping from variables
to values denoted {z; — a1,...,z, — ap}
where a; € Dy,.

A state of a CSP problem (Z, D, C) (or sim-
ply C) is a valuation for Z. A state s is a
solution of a constraint ¢ if s makes ¢ true. A
state s is a solution of a CSP (Z,D,C) if s is a
solution to all constraints in C' simultaneously.

in the unsatisfied clauses.

2.1 SAT

SAT problems are a special case of CSPs. A
(propositional) variable can take the value of
either 0 (false) or 1 (true). A literal is either
a variable z or its complement z. A literal [
is true if [assumes the value 1; [is false oth-
erwise. A clause is a disjunction of literals,
which is true when one of its literals is true.
For simplicity we assume that no literal ap-
pears in a clause more than once, and no literal
and its negation appear in a clause. A satis-
fiability problem (SAT) consists of a finite set
of clauses (treated as a conjunction). Let [de-
note the complement of literal [: [= 7 if | = x,
and | =z if | =2. Let L={l |l € L} for a
literal set L.

Since we are dealing with SAT problems we
will often treat states as sets of literals. A state
{z1 — aq,...,z, — ay} corresponds to the set
of literals {z; | a;j =1} U{Z; | a; = 0}.

2.2 Local Search

A LS solver moves from one state to another
using a local move. The neighbourhood n(s) of
a state s is the states that are reachable in a
single move from state s. The neighbourhood
states are the states reachable in one move
from the current state regardless of the actual
heuristic function used to choose the neighbour
state to move to.

The Hamming distance between states s
and s9 is defined as

Hd(Sl,SZ) = |81 - (81 N 82)| = |82 - (81 N 82)|.

It measures the number of differences in vari-
able assignment of s; and so. A wvector variable
Z=(x1,...,2p).

For the purpose of this paper, we are in-
terested in SAT problems. We assume the
neighbourhood function n(s) returns the states
which are at a Hamming distance of 1 from the
state s. In an abuse of terminology we will also
refer to flipping a literal [which simply means
flipping the variable occurring in the literal. A
local move from state s is a transition, s = s,
from s to s' € n(s).

tor of clauses ¢ (which we will often also treat
as a set). The general LS algorithm starts the
search from a random valuation. This valu-
ation represents the current state. Some LS
algorithms may start the search from a heuris-
tically chosen valuation. Local search then
moves from the current state to a better neigh-
bour. If there is no better neighbour then it is
local minima, trap. It escapes this trap. Some
LS algorithms may include a restart and/or
tabu list. If the search could not find a so-
lution within a number of flips it restarts the
search. It uses tabu list to avoid flipping the
same variable in the next coming number of
steps.

2.3 The DLM Algorithm

DLM [10] is a discrete Lagrange-multiplier-
based local-search method for solving SAT
problems, which are first transformed into
a discrete constrained optimization problem.
Experiments confirm that the discrete La-
grange multiplier(LM) method is highly com-
petitive with other SAT solving methods.

Each clause c¢ is treated as a penalty func-
tion on states, so ¢(s) = 0 if state s satisfies
constraint ¢, and ¢(s) = 1 otherwise. DLM
performs a search for a saddle point of the La-
grangian function

-

L(s,X\) = X-&(s) (that is 23\ x ¢i(s))
where X are LM, one for each constraint, which
give the “penalty” for violating that constraint.
The saddle point search changes the state to
decrease the Lagrangian function, or increase
the (LM). Figure 1 shows the core of DLM. !
In this figure, line 1 shows that the input to
DLM is a set of clauses ¢.

Line 2 makes random initialization to all the
variables.

Line 3 initializes X to 1.

Line 4 repeats the search until it finds a so-
lution or reaches a maximum number of flips.
L(s,X) = 0 means no constraint is violated, i.e.
c(s) = 0.

'Downloadable
http://www.manip.crhc.uiuc.edu/
Wah/programs/SAT_DLM_2000. tar.gz.

from

2- let s be a random valuation for var(¢)
- X=1

4- while (L(s,X) > 0 and (max flips is not over))
- min := L(s, X), best := {}

6- unsat = the literals in unsat clauses
7- for each literal [€ unsat
8- s'i=s—{I}U{l}
9- if (L(s', X) < min)//a downhill move
10- min = L(s', X), best := {s'}, s := &'
11- else if (((L(s', X) = min)
and ([is not in tabu list))

12- best := best U {s'}
13- if (best is empy) then it is trap do learning
14- else s := s - {var := a randomly

chosen element from best} U { var }
15- if (LM update condition holds)
16- X=X+ é(s)
17-return s

Figure 1: DLM (core algorithm)

Lines 5 and 6 set min, best and unsat to
the Lagrangian function of the current state
s, empty and the set of all the literals in the
unsatisfied clauses respectively.

We call the local move if it is to a better and
equal neighbours a downhill and flat moves re-
spectively. Lines 8-12 save the best neighbors
in best. Note that every variable in best must
either make a downhill move or it is not in the
tabu list making a flat move. DLM restricts
the tabu list to the flat moves only. If best is
empty then it is a trap, line 16 makes learning.
In learning, DLM increases the lagrangian mul-
tipliers of the unsatisfied/all clauses according
to a parameter. Line 14 chooses one of the best
neighbours and flip it. Lines 15-16 update the
lagrangian multipliers according to a parame-
ter.

Although DLM does not appear to exam-
ine all the neighbours at Hamming distance
1 in each move, this is an artifact of mixing
of the description of neighbourhood and the
heuristic functions. Since only literals appear-
ing in unsatisfied clauses (unsat) can decrease
the Lagrangian function, (the heuristic func-

ignore/discard neighbours resulting from flip-
ping a variable not in one of these literals. The
full DLM algorithm also includes many other
features, see [11] for details.

3 Encoding CSP as SAT

In this research, we focus on a specific class
of SAT problems, namely those encoding a
CSP. We can encode any binary CSP (Z, D, C)
to a SAT problem, SAT (Z, D,C) as follows.
In this research, we focus our experiments
on the SAT problems encoded from the bi-
nary CSPs. Every CSP variable z € Z is
mapped to a set of propositional variables
{za;,...,%a, } where D, = {ay,...,a,}. For
every z € Z, SAT(Z, D, C) contains the clause
Zgq, V- Vg, , which ensures that any solution
to the SAT problem gives a value to z. We call
these clauses at-least-one-on clauses. Each bi-
nary constraint ¢ € C' with var(c) = {z,y} is
mapped to a series of clauses. If {z — a,y —
a'} is not a solution of ¢ we add the clause
T V Yo to SAT(Z, D, C), where T, and §, €
Z. This ensures that the constraint ¢ holds
in any solution to the SAT problem. We call
these clauses problem clauses.

The above formulation allows the possibil-
ity that in a solution, some CSP variable x
is assigned two values. Choosing either value
is guaranteed to solve the original CSP. This
method is used in the encoding of CSPs into
SAT in the DIMACS archive.

When a binary CSP (Z, D, C) is translated
to a SAT problem SAT(Z,D,C) each clause
has the form %V § except for a single clause for
each variable in Z.

4 The ICM

The ICM is a generic method which can be in-
corporated in any local search algorithm. The
ICM is based on the observation: the solution
space of any subset of constraints in P encloses
all solutions of P. Solving a CSP thus amounts
to locating this space to all the constraints in
P, which could be either points or regions scat-
tered around in the entire search space. The

if the search can move between any two solu-
tions of D without violating any constraint in
D. The idea of ICM works by finding a set
of constraints which are connected, it starts
the search from an assignment which satisfies
all these constraints and finally restrict LS to
search in this space.

Let sol(C) denotes the set of all solutions to
a set of constraints C, in other words the solu-
tion space of C. A set of constraints C is an is-
land if, for any two states sg, s, € sol(C'), there
exist states si,...,s,-1 € sol(C) such that
si = sip1 for alli € {0,...,n —1}. That is we
can move from any solution of C to any other
solution using local moves that stay within the
solution space of C.

Let [it(c) denote the set of all literals of a
clause c. Let lit(C) = Ueeclit(c). A set C
of clauses is non-conflicting if there does not
exist a variable z such that z,z € lit(C). A
non-conflicting set C' of clauses forms an is-
land [8]. Therefore, the problem clauses are
an island. Given a SAT problem, we can in-
corporate ICM into any LS algorithm by the
following steps: We split the clauses to ¢; and
¢y, where ¢; and ¢, are the island clauses and
the at least-one-on clauses respectively. Make
an initial valuation that satisfies ¢;; getting in-
side the island. ¢; consists of clauses of the
form Z V §. An arbitrary extension of lit(¢;) to
all variables can always be such an initial val-
uation. Restricting the search to search within
the at-least-one-on clauses while satisfying the
problem (island) clauses. To do so, we exclude
literals [from flipping when s’ = s—{I} Ul does
not satisfy ¢;. Hence we only examine states
that are in n(s) and satisfy ¢;.

5 The ICM in DLM

Figure 2 shows DLMI2004, the ICM incorpo-
rated into DLM [11]. DLMI2004 is an en-
hanced version of DLMI12002 [8]. Table 1 shows
the results of DLMI2002 and DLMI2004 for the
same instances appeared in [8]. We ran all the
instances on the same machine; a PC with Pen-
tium ITI 800 Mhz and 256 MB memory. There
are two new features of DLMI2004: restart and
learn. The following is the detail description

uation that gets the search inside the island.
Line 6 restarts the search after each cutof f
flips, where cutof f is a parameter. Line 9 sets
unsat to the set of free literals in the unsatis-
fied clauses so that flipping any of these literals
will not violate any island clause. It is an is-
land trap if unsat is empty. Lines 6 and 10
contain the new features of DLMI2004. We do
learning in the same way DLM does learning in
the DLM traps. line 10 learns when the num-
ber of traps reaches a certain limit. If there is
no island traps, lines 13-14 make a DLM move.
Note that DLM trap never happened and this
is because every literal appears only once in the
at-least-one-on clauses and flipping this literal
will only satisfy the clause in which this literal
occurs. In other words, if the literal z is free
then flipping z makes a downhill move.

The parameter appeared in table 1 is for
DLMI2004. The PS, P and cutoff parame-
ters are one of the five sets of parameters men-
tioned in [11], the probability used when es-
caping from the island trap and the cutoff value
used before we restart the search respectiely.
The PS value is the same for both algorithms
DLMI2002 and DLMI2004. The table shows
the success ratio, average solution time (in sec-
onds) and average flips on solved instances for
DLM, DLMI2002 and DLMI2004.

DLMI2004 shows substantial improvement
in time and in number of flips over DLMI2002
in increasing permutation generation, latin
square, hard graph-coloring and tight random
CSP problems. Note that DLMI2004 could
solve ap30 instance which DLM 12002 could
not. The rest of the instances DLMI2004 per-
forms almost the same as DLMI2004.

6 Conclusion

We have presented the DLMI2004 algorithm
which is the new improved algorithm over
DLMI2002 and we have seen that there is sig-
nificant improvement in the results of the in-
creasing permutation generation, latin square,
hard graph-coloring and tight random csps.
We believe there is a plenty of scope for us-
ing the ICM concept to improve other LS al-
gorithms, such as WalkSAT, ESG and others.

2

12-
13-
14-
15-

split ¢ into ¢; and ¢,
make an initial valuation s that satisfies ¢;
X=1
while (L(s,X) > 0 and (max flips is not over))
restart after each cutof f flips
min := L(s, X), best := {}
unsat 1= U{l | | € unsatisfied clauses |
c€&,s ¢ sol(c) and (s —1UI) € sol(c;)}
if (unsat is empty) then an island trap
learn after learn island traps
escape an island trap in the same way
mentioned in [8]
else lines 8-12 from figure 1
s := choose randomly element from best
lines 15-16 from figure 1
return s

Figure 2: The DLMI algorithm.

References

[1] Selman B.;

Kauts H. A. and Cohen
B. Noise strategies for improving local
search. In AAAI pages 337-343, 1994.

Minton S.; Johnston M.D.; Philips A.B.
and Laird P. Minimizing conflicts: a
heuristic repair method for constraint sat-
isfaction and scheduling problems. In AT
58, pages 161-205, 1992.

Mackworth; A.K. Consistency in networks
of relations. In ATl 8(1), pages 99-118,
1977.

Selman B. and Kautz H. Domain-
independent extensions to GSAT: Solving
large structured satisfiability problems. In

TIJCAI pages 290-295, 1993.

Davenport A.; Tsang E.; Wang C. and
Zhu K. GENET: A connectionist archi-
tecture for solving constraint satisfaction
problems by iterative improvement.
AAAI pages 325-330, 1994.

In

Schuurmans D. and Southey F. Local
search characteristics of incomplete sat
procedures. In AAAI pages 297-302,

Instance ‘ Succ Time Flip ‘ Succ Time Flip
N queens problem: PS = 2, learn = 100, P = 70 and cuttoff = 2,000
10queen 20/20 0.00 110 | 20/20 0.00 95
20queen 20/20 0.01 116 | 20/20 0.01 120
50queen 20/20 0.12 175 | 20/20 0.18 194
100queen 20/20 0.88 244 1 20/20 0.70 199
Random permutation generation problems: PS = 4, learn = 200, P = 70 and cuttoff = 500,000
pp50 20/20 0.13 204 | 20/20 0.18 280
pp60 20/20 0.24 308 | 20/20 0.36 295
pp70 20/20 0.36 323 | 20/20 0.34 344
pp80 20/20 0.49 308 | 20/20 0.50 360
pp90 20/20 0.73 311 | 20/20 0.86 269
ppl100 20/20 0.94 269 | 20/20 1.08 270

Increasing permuta

tion generation problems: PS = 3, learn = 1, P = 70 and cuttoff = 1,000,000

apl0 20/20 0.03 6,446 | 20/20 0.03 2,015
ap20 20/20 33.39 3,266,368 | 20/20 14.48 211,031
ap30 20/20 — — — 443.35 1,907,253
Latin square problems: PS = 4, learn =16, P = 90 and cuttoff = 1,000,000
magic-10 20/20 0.02 401 | 20/20 0.02 315
magic-15 20/20 0.11 1706 | 20/20 0.08 709
magic-20 20/20 0.52 6824 | 20/20 0.28 1,473
magic-25 20/20 2.53 25240 | 20/20 0.87 2,389
magic-30 20/20 60.23 513,093 | 20/20 2.44 3,845
magic-35 3/20 723.42 3,773,925 | 20/20 5.29 5,631
Hard graph-coloring problems: PS = 3, learn = 36, P = 85 and cuttoff = 1000000
g125n-18¢ 20/20 0.81 15,314 | 20/20 0.49 8,929
£250n-15¢ 20/20 0.47 2,815 | 20/20 7.23 3,608
g125n-17¢ 20/20 188.61 4,123,124 | 20/20 40.85 1,099,926
£250n-29¢ 20/20 128.81 867,396 | 20/20 79.67 560,737
Tight random CSPs: PS = 4, learn = 16, P = 70 and cuttoff = 3000
resp-120-10-60-75 | 20/20 1.33 2,919 | 20/20 0.70 1,179
resp-130-10-60-75 | 20/20 1.30 2,528 | 20/20 0.89 1,379
resp-140-10-60-75 | 20/20 2.08 3,682 | 20/20 1.11 1,627
resp-150-10-60-75 | 20/20 1.44 2102 | 20/20 0.80 7,90
resp-160-10-60-75 | 20/20 2.33 3,306 | 20/20 1.15 1,196
resp-170-10-60-75 | 20/20 2.56 3,435 | 20/20 2.31 2,792
Phase transition CSPs: PS = 3, learn = 36, P = 70 and cuttoff = 1,000,000
resp-120-10-60-5.9 | 19/20 28.71 1,909,746 | 20/20 27.73 1,734,696
resp-130-10-60-5.5 | 16/20 103.92 6,445,009 | 20/20 167.02 9,675,405
resp-140-10-60-5.0 | 20/20 14.07 850,886 | 20/20 16.74 1,012,200
resp-150-10-60-4.7 | 19/20 90.71 5,273,978 | 20/20 113.36 6,222,070
resp-160-10-60-4.4 | 19/20 31.129 1,695,978 | 20/20 41.43 2,162,274
resp-170-10-60-4.1 | 19/20 24.17 131,357 | 20/20 41.18 2,046,899

Slightly easier phase transition CSPs: PS =3, learn = 36, P = 70 and cuttoff = 1,000,000

resp-120-10-60-5.8 | 18/20 9.61 641,175 | 20/20 8.54 558,616
resp-130-10-60-5.4 | 19/20 16.82 1,062,060 | 20/20 21.61 1,313,539
resp-140-10-60-4.9 | 20/20 3.28 195,881 | 20/20 7.86 453,190
resp-150-10-60-4.6 | 20/20 8.47 499,480 | 20/20 8.05 460,211
resp-160-10-60-4.3 | 20/20 10.36 574,386 | 20/20 9.36 485,895
resp-170-10-60-4.0 | 19/20 3.74 197,758 | 20/20 4.65 227,894

Table 1: Comparative empirical results DLMI2004 versus DLMI2002.

2000.

Selman B.; Levesque H. and Mitchell D.G.
A new method for solving hard satisfia-
bility problems. In AAAI pages 440-446,
1992.

Fang H.; kilani Y.; Lee J. and Stucky P.
Reducing search space in local search for
constriant satisfaction. In AAAI 2002,
pages 200-207, 2002.

Morris P. The breakout method for escap-
ing from local minima. In AAAI pages
40-45, 1993.

Wu Z. and Wah B.W. Trap escaping
strategies in discrete lagrangian methods
for solving hard satisfiability and maxi-
mum satisfiability problems. In AAAI
pages 673-678, 1999.

Wu Z. and Wah B.W. An efficient global-
search strategy in discrete lagrangian
methods for solving hard satisfiability
problems. In AAAI pages 310-315, 2000.

