
Visualizing Object Oriented Software Using Virtual worlds

 Satish.C.J Raghuveera.T

Department of Computer Science and Engineering,
College of Engineering, Anna University

Chennai, India.

Abstract

Software maintenance is the key issue in today’s world. Lot of time and money is spent on making
changes to existing versions of the software. Software maintenance engineers are forced to take up the
extreme task of understanding large and complex software, which were not developed by them. Poor
documentation can make understandability more complex and a mind-breaking task. Hence tools that
can aid the software engineers to easily understand a given code is the need of the hour. The
development of such a system that eases the understandability of software through visualizations forms a
major part of this work.

Keywords: Virtual Reality Modeling language, Software visualization..

1. Introduction

 Software maintenance is the key issue
in today’s world. Lot of time and money is
spent on making changes to existing versions of
the software. Software maintenance engineers
are forced to take up the extreme task of
understanding large and complex software,
which were not developed by them. Poor
documentation can make understandability
more complex and a mind-breaking task. Hence
tools that can aid the software engineers to
easily understand a given code is the need of the
hour. The development of such a system that
eases the understandability of software through
visualizations forms a major part of this thesis.
 Visualizations shall be three dimensional in
nature, and viewable using some type of inter-
active browser. Object orientation is now a
common principle, and 3D graphics are
becoming more and more common. The
description “Virtual Worlds" implies 3D
graphics. Virtual Worlds are more than simply
3D diagrams; Virtual worlds must be interactive
and navigable, like the real world. . Static
visualization is chosen for two primary reasons.
Firstly, this thesis has been written from the
stance of making software more easily
understood. If these visualizations are
successful, they should be superior as learning
tools to viewing system source code or other

artifacts such as Javadoc. Source code is a
representation of the static system, so the
reasoning for using a static system is clear in the
context of making software more
understandable. Secondly, a static
representation is more amenable to a Virtual
World, implementation, than, for example, a
program trace. Dynamic representation,
generated from a program trace, is useful in
other contexts, such as debugging and profiling.
A three dimensional approach is taken to allow
more information to be available to a user,
without compromising clarity. The reasoning
being that a traditional two-dimensional
visualization can easily become cluttered with
too much information. 3D also has the
advantage of providing a more immersive
environment for the user to explore.

2. Background

Much has been written on the subject of
Software Visualization (SV) in general. It is a
broad field, with a lot of room for interpretation.
Some good references, for a broad overview,
are: [5], [6], and [7].

From this general approach, focus has
been on two sub-areas of SV, Object-oriented.
Software visualization, and three dimensional
software visualization. Substantial work has
been done in both of these fields separately, and
in combination, as in this study. Some

references for a good overview are: [8], [5], [9],
and [10].
To deal with the OO approach to SV first,
efforts in this area have been, broadly speaking,
divided into two areas. The first being a run-
time examination of systems. This type on
visualization involves the generation of
visualization from a program trace. The other
area is static examination of OO systems. This
thesis deals only with the latter type, static
visualization. Static OO visualization deals with
the details of program structure that can be
discerned without ever actually executing the
program. These must be derived from the
program source.
 A description of the attributes of an OO system
that may be modeled is given in a later section.
Work done in the field of static OO
visualization is rather thinner on the ground
than that on dynamic visualization. Languages
such as UML (Unified Modeling Language)
have symbols defined for visualizing an OO
program's structure. There exist tools to
generate a UML diagram, given a system. The
software development tool, Rational Rose,
allows OO systems to be designed in a
graphical way, and turned into class skeletons.
UML can also be output. A good overview of
both UML and Rational Rose can be found in
the book Mastering UML with Rational Rose.
For an overview of work done in the area of
static OO visualization, see the aforementioned
Visualizations of Large Object Oriented
Systems [9].

Much work has been undertaken in the
field of dynamic OO visualization. This type of
visualization is usually done for debugging
scenarios and algorithm visualization, rather
than program understanding, so is not really of
relevance to this work. The work focuses on
tracing program execution through classes and
method calls. A good reference to compare this
form of visualization to static visualization is
Using Visualization to Foster Object-Oriented
Program Understanding [5]. The goal is to
trace execution, not visualize program structure.
The three dimensional aspect of SV is covered
in numerous papers. Some deal simply with the
potential of having an added spatial dimension
[8], whilst others become more involved, and
discuss the advantages offered by having an
immersive environment. None apparently use
the 3rd dimension to its full potential, only
using it as an extra dimension into which to
move objects, rather than take advantage of its
other possibilities. The approach here is not to

use the 3rd dimension for any one variable, but
to allow it to be used for any number of
variables, or just to aid clarity in a model.

3.Advantages of 3D over 2D.
3.1. The average distance between entities in 3D
space would be less than in an equivalent 2D
space. This is due to the fact that 2D diagrams
are forced to be spread out, whereas 3D has the
potential to be more compact.
3.2. Links are less likely to cross (or come
close) than in 2D diagrams. In a complex 2D
diagram, in which entities may be linked to
other entities to show relationships, it is often
impossible to avoid the crossing of links. If this
happens often enough diagrams can become
very confusing and virtually unreadable. 3D
diagrams avoid this potential problem entirely.
There is no single plane that links are restricted
to; links can travel in any direction. It is
relatively rare for links to need to cross in a 3D
diagram.
3.3. The positions of objects in space may have
relevance to properties. For example, objects
below object X have property P, objects behind
have property K, etc. In 2D diagrams, this is
limited to above, below, left and right. 3D adds
depth, allowing more information density. We
can now connect meaning to an entity being
behind another, or in front of it.
3.4. 3D also offers more interesting options as
far as actual viewing is concerned. Whereas a
user can scroll around a 2D diagram, they may
wish to fly around a 3D view, or walk, or
simply stay put and rotate the world around
them. When a model is built, the most
appropriate means of navigation will have to be
considered. For small diagrams, the best
solution may be to have the model surround the
user, and allow them to study the entire world
simply by spinning it around on some axes. For
a large diagram there may be tiers of
information, the top level may contain different
information to the second level. Therefore it is
feasible that the user may walk around the
levels, and fly between them

4.The System Architecture

The code that is taken for visualization common
is converted in to an intermediated language
called Object Oriented Definition Language.
The OODL file is then scanned for the
information about the code and based on the

information different types of models are
developed. These models are provided with the
appropriate textual labels and they are easily
navigable and user friendly. In this paper a new
model for representing object oriented software
in virtual worlds is brought out. As there are no
standard notations for representing Object
oriented software in a virtual world we hope
that this will act as a foundation for the future
work in this area. Six different types of views
are developed for a given source code and they
help in conveying a better and quick
information to the user. The various types of
views and are explained briefly below

4.1.The Class Centric View.
This model is developed to represent the
information of the object-oriented software at a
very abstract level. The user gets a feel about
the several number of classes available in the
code by viewing this sort of a view .The size of
the program is also represented here, as the
number of classes indirectly represent the size
of the code.
 The given code is first scanned for the number
of classes and then the order of the classes are
taken in to account and then the corresponding
model is developed. This view is basically
developed to give a very high level information
to the user .The user also gets familiar with the
various shapes available and the several colors
available for generating a particular model. This
view provides the facilities for the user to
change the color and the shape of the model
based on their own interest and thereby will
help them to get accustomed to the future
models that will consist of more information.
The figures shown demonstrate the model
generated for class view. The user is able to
generate the model with different shapes and
colors of his choice as shown in the figure.

 Figure 4.1.Class view

.The size of the program is also represented
here, as the number of classes indirectly
represent the size of the code.
 The given code is first scanned for the
number of classes and then the order of the
classes are taken in to account and then the
corresponding model is developed. This view is
basically developed to give a very high level
information to the user .The user also gets
familiar with the various shapes available and
the several colors available for generating a
particular model. This view provides the
facilities for the user to change the color and the
shape of the model based on their own interest
and thereby will help them to get accustomed to
the future models that will consist of more
information.
The figures shown demonstrate the model
generated for class view. The user is able to
generate the model with different shapes and
colors of his choice as shown in the figures.
Thus the user gets a feel about the order of the
classes in the code and their names and the user
also feels the flexibility in the model generated
by changing the shapes and colors of the model
that is generated to represent the classes

4.2.Property Centric View
A central class is visualized together with
representations of the properties that compose
the class. This type of model focuses on a class,
and its associations with its properties. The type
of model generated by this framework could be
useful in two cases. Firstly, by showing the
types of public properties, some information is
made available to the user about the interface of
the class being focused on. Secondly, the
combination of private and public properties
gives the user a good indication of the
composition of the class, the data that it
encapsulates. The layout of such a model would
need to be similar to that of a method-centric
model, with the focused on class central,
surrounded by representations of its properties.
Alternative forms of layout are, of course,
possible, however. One could imagine a
situation where the central class is represented
by some large transparent entity, and within this
are representations of properties.
The several classes that are scanned by from the
code are represented to the user and the users
option is got and the particular class is scanned
from the code taken for visualization. The
information about the public, protected and
private variables available in that class are
obtained and the internal representation is built.

Based on the information available the model is
generated for representing the details of the
properties of the class using VRML.Here the
central class is shown as a Sphere with the
variables linked to it in the form of small
spheres as shown in the figure.

 Figure 4.2.Property View

Thus the model generated represents the
available public, private and protected variables
in a class and thereby gives information about
the interface of the class. The model is also
flexible to the user, as the user can change the
color and the shape of the model according to
his interest.

4.3.Method Centric View

A class representation together with
representations of its methods is shown. The
models generated from this framework could be
useful for analyzing the interface of a class, that
is, its methods. There are two facets to a
method-centric framework. The first is a
representation of method return types, the
second is a representation of argument types.
By types, we mean the classes that are returned,
or used as
arguments.

Figure 4.3 Method Centric view

There are several intuitive ways to lay out the
method-centric model. One would be to have
the class being focused on central to the model,
surrounded by representations of its methods.
When clicked upon these methods may expand
to show the classes, which comprise their
arguments and return types. Another model may
involve having separate representations for the
various classes, which are arguments and return
types, and having links to these from the central
class. It may be sensible in some situations (i.e.
a large number of classes) A simple sketch of
how a method-centric model appears is shown
in Figure 4.3. The central method being
visualized is central, with representations of its
methods hanging off it.

4.4.Complete view

This view in short can be called as the
combination of the three views mentioned
above. The view depicts the details of the
methods and properties of all the classes
available. This view gives complete information
about the inner details of the classes .As the
model that is generated involves more
information embedded, the user is given the
option of generating the model from three
different angle. This sort of user flexibility
enables the user to easily navigate through the
model and henceforth understand the code
easily.

Figure 4.4 Complete View

 Thus this sort of a model with different angles
of view helps the user to understand and
compare the information available inside the
code.

4.5.Inheritance Centric view
This view allows a class to be viewed in the
context of all classes from which it is derived.
This framework allows the user to get an instant
overview of a class and which methods and
properties it has available from parent classes,
without an excessive amount of navigation.
Numerous variations are possible within this
framework. Some may be more beneficial than
others. The nature of systems being visualized
may also dictate the best layout. For instance, a
system with a very deep inheritance hierarchy
(that is, a relatively large number of ancestors
per class) may be better suited to a model in
which all parent classes are shown in
conglomerate form, so as less navigation is
required. Those with perhaps only one or two
generations behind them may, conversely, be
more suited to a model showing each class
individually, to emphasize which classes
contribute which members. In the model shown
in the figure4.5 the inheritance hierarchy is
shown for any particular class that is selected by
the user from the list of the available classes.
The ancestors of that particular class are
represented. The user is also provided with
option of selecting various shapes and colors for
the model.

Figure 4.5.Inheritance Centric View

4.6.Metric Centric view

A lot of metrics information can be generated
from a systems source code. Some of this may

be useful as part of a visualization to aid a user
in maintaining code. There now also exist, in
addition to standard metrics for procedural
languages, specialized metrics for OO systems.
The types of metrics worth including are those
such as \Lines of Code", and \Age of Code".
These can be applied with various scopes to add
meaning to visualization. For instance, they may
be scoped to a branch of the inheritance
hierarchy, a single class, or a method. There
needs to some trade off between information
quantity, and cluttering of the 3D world.
The advantage of including metrics information
within visualizations is that they need not be
intrusive. They can be supplementary to the
main focus of a model. That is, there will be
principally an inheritance hierarchy-centric
model, with elements of metrics playing a
supplementary role.

Figure 4.6.Metric centric view

size of the code taken for visualization. The
view considered here represents the number of
defects reported in the functionalities of the
code during the several months. This will help
the user to identify the more error prone areas in
the code and pay more attention to it. The lines
of code are also visualized for the several
classes and modules in a code. This is a metric,
which gives the age of the code and the number
of times the code has been modified can also be
visualized as part of the metric centric view

5. CONCLUSION

This project has shown that we can find new
visualizations and representations for the
structure of a software system. These move
away from the conventional visualizations of
directed graphs and expand into a more flexible
and information rich environment. The new
visualizations and representations make use of
virtual worlds rather than the more familiar and
more limited flat visualizations. User studies are
needed in order to clarify which visualizations
are most useful to software engineers.
Virtual and augmented reality environments
encourage and support the collaborative
analysis of large complex systems and their
increased adoption as part of the software
engineering tool set is anticipated.

6. Future Enhancements

Features to support collaborative problems
solving within the VE will be of great benefit to
large-scale software development. Multiple
developers can enter the VE from the same or
remote sites to address problems of design,
maintenance, or error correction. This type of
environment will also prove useful for
explaining the complexities of a software
system to new team members. The future
version of this system will be further integrated
into the software development process. The
representation of the software system will be
updated as each line of code is written or
changed and saved.
 The system can thus be extended to meet the
collaborative work requirements of software
maintenance engineers. As further
enhancements are reported in distributed VE
these sort of multi-user VE systems for
maintenance can be made possible in the near
future.

References

1. N. Churcher, W. Irwin, and R. Kriz.
“Visualising class cohesion with virtual
worlds”. In T. Pattison and B. Thomas, editors,
Australasian Symposium on Information
Visualisation, volume 24 of Conferences in
Research and Practice in Information
Technology, pages 89--98, Adelaide, Australia,
Feb. 2003.

2. Maletic, J.I.; Leigh, J.; Marcus, A.; Dunlap,
G. “Visualizing object-oriented software in
virtual Reality” Program Comprehension, 2001.
IWPC 2001. Proceedings. 9th International
Workshop on , 12-13 May 2001 Pages:26 – 35
3. Young, P.; Munro, M. “Visualising software
in virtual reality” Program Comprehension,
1998. IWPC '98. Proceedings., 6th International
Workshop on , 24-26 June 1998 Pages:19 – 26.
4. Knight, C.; Munro, M. “Virtual but visible
software” Information Visualization, 2000.
Proceedings. IEEE International Conference on
, 19-21 July 2000 Pages:198 - 205
5.Dean F Jerding and John T Stasko. “Using
visualization to foster object-oriented program
understanding”. Technical report, Georgia
Institute of Technology, July 1994.
6. G Ruia-Catalin Roman and Kenneth C Cox.
“Program visualization: The art of mapping
programs to pictures”. In Proceedings of the
14th International Conference on Software
Engineering, May 1992.
7.Blaine A Price, Ronald M Baecker, and Ian S
Small. “A principled taxonomy of software
visualization”. Journal of Visual Languages and
Computing, 4(3):211{266, September 1993.
8. Hideki Koike. “The role of another spatial
dimension in software visualization”. ACM
Transactions on Information Systems, 11(3):
266{286, July 1993.
9 .P Haynes, T J Menzies, and R F Cohen.
“Visualizations of large object oriented
systems”. Technical report, Monash University,
1996.
10 .John T Stasko. “Three-dimensional
computation visualization”. Technical report,
Georgia Institute of Technology, 1992.

