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Abstract: - Multidimensional time-frequency representations of signals are images of changes in time of signal 
spectrum and thus play an important role when they are analysed and processed. There is a number of possible ways of 
time-frequency representation of signals. Their properties depend on the transformation algorithm used, and they differ 
not only in the resolution of changes in the time and the frequency domain but also in the computation complexity 
during the realization. Today, rapid processing of great amounts of data in a very short period of time is often required. 
It is, above all, in systems processing signals in real time that minimum delay in processing the signal is of much 
concern and therefore it is important to tackle the problem of the computation complexity of the algorithms used. 
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1   Introduction 
In the spectral analysis of signals it is often of advantage 
to know the changes in signal spectrum vs. time. Signal 
frequency changes vs. time give multidimensional time-
frequency representations of signals such as spectrogram 
and scalegram. 
 
 
2   Realization of spectrogram 
Spectrogram is a time sequence of short-time signal 
spectra, which is realized as a sequence of short-time 
Fourier transforms (STFT) of time-limited signal 
frames. The signal is divided into a sequence of frames 
that overlap by a conveniently chosen overlap, as 
shown in Fig.1. 
All such signal frames are weighted by a window 
function for the removal of fringe distortions caused by 
the finite length of frame, and then processed by the fast 
Fourier transform (FFT) algorithm to give the spectral 
representation. It is obvious from Fig.1 that the number 
of frames, M, into which an input signal of length d is 
decomposed, depends on the length of individual 
frames, N, and on their overlap p according to 
relation (1). 
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A fast decomposition algorithm of type DIT is used 
when implementing the FFT in a digital signal processor 
[1]. Essentially, this is a progressive decomposition of 
the signal into even and odd components. If the length 
of the frame being processed is N = 2n samples, then    
n-times repeated decomposition can be used to 

decompose the frame into sequences of only 2 samples, 
whose DFT can be expressed by relation (2) from [1]. 
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where  S(k)   is the k-th spectral component, 
 s(n)   is the n-th signal sample, 
 W      is the transformation operator. 
 

 
 

Fig.1  Signal decomposition into frames 



In the literature, these two simple mathematical 
operations are often referred to as “butterfly”. The 
signal-flow graph of one such butterfly is shown in 
Fig.2. 

 
Fig.2  Signal-flow graph of a butterfly 
 
In digital signal processors, butterfly operations are 
realized using two simple instructions for multiplying 
two operands with accumulation, which are often 
referred to as MAC instructions (Multiply AcCumulate). 
The whole DIT algorithm operates section-wise at 
several decomposition levels, with each section being 
formed by parallel computation of N/2 butterflies, as 
illustrated in Fig.3. 

 
Fig.3  Signal-flow graph of the FFT algorithm 
 
It follows from Fig.3 that processing a frame of length 
N proceeds by log2 N decomposition levels, with just 
N/2 butterflies being realized at each level. Each level is 
formed by just two MAC instructions and thus the 
number of instructions necessary to realize the whole 
FFT algorithm for one signal frame of length N is given 
by relation (3). 
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Multiplying relation (1) by relation (3) gives a relation 
for the total number of MAC instructions necessary to 
realize the spectrogram matrix 
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 When processing the signal into the spectrogram it is 
convenient to choose the length of the frame being 
processed to be ca. 30 ms since within this interval of 
time the speech signal can be considered stationary. If at 
sampling frequency fs = 8000 Hz we are seeking a frame 
whose length is N = 2n samples and which should take 

ca. 30 ms, we must choose the frame length N = 256 
samples. For the spectrogram resolution in the time 
domain to be sufficiently high we choose the frame 
overlap to be p = 64 samples. To make the calculation 
easier, it is convenient to choose the input signal length 
d = 6656 samples. According to relation (1) we then 
divide the signal into M = (6656 – 256)/64 = 100 
frames, and the total number of MAC instructions 
necessary to process the whole spectrogram according 
to relation (4) will be 
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3   Realization of scalegram 
Scalegram is a graphical representation of detailed 
coefficients of the discrete wavelet transform (DWT). 
Detailed coefficients SDWT represent the similarity 
between the signal and the applied wavelet of length a 
shifted by time τ. Their computation is given by relation 
(5) from [2]. 
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where  sn is the n-th signal sample, 
SDWT(j,k) is the k-th coefficient of j-th 
decomposition level, 
wk-n is the k-th sample of the applied wavelet of 
length a, shifted by τ. 

 
The most frequent realization method suitable for 
implementation in a digital signal processor is the fast 
pyramidal algorithm, with which the signal 
decomposition proceeds by individual levels through a 
system with several sampling frequencies (Multirate 
system). The core of the algorithm is formed by a bank 
of two orthonormal FIR filters (filters of the QMF 
type), which at each decomposition level decomposes 
the signal into the upper and the lower half of frequency 
band. The output signals of the filter bank are doubly 
decimated. The signal obtained from the lowpass filter 
forms a vector of approximation coefficients, which 
enter the next decomposition level while the signal on 
the output of highpass filter forms a vector of detailed 
coefficients, which form the algorithm output. The 
algorithm vs. time is illustrated schematically in Fig.4. 
The QMF filters employed are digital filters of the type 
of FIR, whose frequency responses are mutually 
mirrored about fs/4 and form the orthonormal base of 
the whole frequency spectrum (0 ÷ fs/2). Thus we have 
here one filter of the type of highpass filter and one of 
the type of lowpass filter, whose cut-off frequencies are 
fm = fs/4, which split the signal spectrum into the upper 
and the lower part. The response of FIR filter to the 



signal corresponds to the convolution of the signal and 
the impulse response of the filter. 
 

 
Fig.4  Schematic diagram of pyramidal algorithm 

 
The convolution of the signal and the impulse response 
of an FIR filter of R-th order is described by relation (6) 
from [2]. 

∑
=

−=
R

k
knhkxny

0
)()()( .         (6) 

 

It is evident from relation (6) that the sum of the 
products of signal samples and (R+1) values of the 
impulse response of filter in digital signal processors is 
realized by (R+1) MAC instructions. The number of 
MAC instructions necessary to perform the whole 
convolution of a signal of length d and the impulse 
response of filter is given by relation (7). 
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In the implementation in digital signal processors, 
decimation is only realized by changing the method of 
memory addressing. It is sufficient to change the value 
N of the addressing unit register, which in the modulo 
addressing mode realizes the shifting of address pointer 
by N positions. The whole decimation is thus realized 
by a single move (MOV) instruction, which in parallel 
data processing does not take any time.  
Each decomposition level is always formed only by the 
convolution of a signal of length d and the impulse 
response of the highpass and the lowpass  FIR filter of 
R-th order, with the signal length being halved on each 
subsequent level. The number of MAC instructions 
necessary to realize one decomposition level is given by 
relation (8). 
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The number of MAC instructions required to realize the 
whole pyramidal algorithm that decomposes the signal 
into K decomposition levels is given by relation (9). 
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When processing a signal section of length d = 6656 
samples by the fast pyramidal algorithm, using FIR 
filters of order R =31, into N = 8 decomposition levels, 
the processor will by relation (9) perform a total of 
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instructions, which is approximately twice as much as 
in the case of spectrogram processing. 
However, the algorithm can also work with FIR filters 
of order R = 1. In that case to process a signal the whole 
algorithm needs only 
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which is almost eight times less than in the case of 
spectrogram processing. 
 
 
4   Conclusion 
For low-order QMF filters the computation complexity 
of scalegram is several times smaller than that of 
spectrogram. It is therefore obvious that in applications 
that do not require a high resolution of 
multidimensional representation of signals it is, in view 
of the considerable reduction of time and computer 
demands, of advantage to use for the time-frequency 
representation of signals the detailed DWT coefficients 
determined by the fast pyramidal algorithm. This 
concerns particularly signal compression applications, 
which do not require a very high resolution of details in 
signal representation. Using the scalegram in signal 
representation is not suitable when separating signal 
from noise, for example by the method of thresholding 
multidimensional representations, where much depends 
on the resolution of details of multidimensional 
representation if the speech activity area of the signal is 
to be correctly distinguished from noise. 
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