
Designing with programmable logic devices - course at the University of
West Bohemia

MARTIN POUPA

Department of Applied Electronics and Telecommunications
University of West Bohemia in Pilsen

Univerzitní 26, Pilsen 306 14
CZECH REPUBLIC

poupa@kae.zcu.cz http://home.zcu.cz/~poupa

Abstract: - This article deals with the evolution of teaching of programmable logic devices at the Faculty of Electrical
Engineering in Pilsen. Several ways how to verify digital designs in the laboratory exercises are described and finally
demonstration example of a simple digital circuit (generator of Fibonacci numbers) with the testbench used in
laboratory exercises are shown.

Key-Words: teaching, programmable logic devices, VHDL, computer aided design

1 Introduction
The programmable logic devices (PLD) have been
taught for a long time at the University of West
Bohemia, Faculty of Electrical Engineering. In the early
nineties, programmable logic devices were taught in the
extent of several hours of lectures and laboratory
exercises. Since the summer semester 2001, the PLDs
have been taught in the special facultative subject named
“Programmable Logic Devices”.

2 Description of subject
In the subject “Programmable Logic Devices” the
students are familiarized with the elementals of
programming and the utilization of the programmable
logic devices, and the methods of the design of
combinatorial and sequential digital systems are
explained and exercised. For the description of the
digital systems, the high-level hardware description
language VHDL is taught and used. The VHDL
language is taught in accordance with IEEE Standard
VHDL Language Reference Manual (IEEE Std 1076-
1993 Edition).
 There are three architectures of programmable logic
devices – the SPLD, CPLD and FPGA. The lectures
provide information on the two main architectures
(CPLD and FPGA) that is common also to the wide
range of PLD devices. Detailed description of CPLD
family XC9500 from Xilinx and FPGA family Cyclone
from Altera is given to the students. Both mentioned
families have favourable price/performance rate,
availability, and are supported by free development
systems from their manufacturers.

2.1 Lectures and laboratory exercises
The subject has two hours of lectures and two hours of
laboratory exercises per week in a 13-week semester.

2.1.1 Curriculum of lectures (13 weeks)
 1. Introduction, history and generations of PLD
 devices, usage of PLD devices
 2. Architectures of SPLD, CPLD and FPGA. Basics of
 VHDL language, syntax, entity, architecture
 3. Concurrent statements – unconditional, conditional
 and selective statements, components, processes
 4. MUX (with when-else, with-select, process-case),
 process, sensitivity list, wait statement
 5. Implementation of RS, D, T, JK flip-flops,
 parameterization by generate and loop statement
 6. Architecture and features of modern CPLD devices
 7. Implementation of memories (sync/async. ROM,
 single and dual-port RAM, FIFO)
 8. Architectures and features of modern FPGA devices
 9. Automated test benches, simple UART (8D, 1S, 0P)
10. Attributes of types, subtypes, arrays, signals, entities,
 user defined attributes
11. Libraries, packages, Library of Parameterized
 Modules (LPM 2 0 0)
12. Description of Moore and Mealy state machines in
 VHDL, file types
13. Implementation and usage of software processors in
 FPGA devices

2.1.2 Laboratory exercises
Professional tools for digital design in the VHDL
language are expensive, but free versions which have
some functionality limitations can be obtained from web
sites of most CAE/CAD/EDA companies and PLD
manufacturers for free. Thanks to this we are using for
practical lessons free version of the VHDL simulator
“VHDL Simili” from Symphony EDA. The free version

mailto:poupa@kae.zcu.cz

has significant advantages and disadvantages. The
advantage of the VHDL Simili is a very intuitive
program to work with and availability of a free version,
so the students get familiar with it in a short time, and
they can use it for learning VHDL language and working
on semester projects at home. The disadvantage of the
free version of VHDL Simili is that it cannot plot VHDL
variables and the maximum number of waveforms is
limited. Smaller disadvantage is that it has reduced
simulation speed for larger designs.
 In practical lessons the students work on a given task,
describe it in VHDL, simulate it on VHDL simulator,
and in several tasks they verify the design on real
hardware. For testing of the designs on real hardware we
use the Design Laboratory Package UP1 boards from
Altera. We obtained these boards at a very low price as a
benefit of the Altera University Program. This board
meets all needs for teaching the digital logic design with
the state-of-the-art development tools and programmable
logic devices. It contains the FPGA device FLEX10K20
and CPLD device MAX7128S from Altera, an oscillator,
DIP switches, push buttons, LEDs, seven-segment LED
displays, a VGA connector, a PS/2 connector, a
configuration device and expansion slots. For the
implementation of digital designs we use the Altera
Quartus II Web Edition software, also free of charge.
 For the software verification of the laboratory designs
use the VHDL test benches written by the students or
prepared by the lecturer. Possibility of simulation files
generated by waveform editors is only mentioned but not
used because students get better knowledge of the
VHDL language when they use it for all purposes –
design and verification. Test benches written in VHDL
have several advantages compared to waveform based
simulation:

• VHDL test bench is more concise
• VHDL test bench can provide an automatic test

of the correctness of simulation results
• VHDL test bench can read and write

input/output data to or from files for the design
under test

• Test bench written in VHDL is independent of
the type of currently used development /
simulation system

• Test bench written in a high level language is a
suitable method for testing of large designs

There are three alternatives of the VHDL digital designs
testing:

• Functional simulation based on .vhd files
• Post-fit functional simulation based on .vhd and

.vho files
• Timing simulation based on .vhd, .vho and .sdo

files

• The first alternative is used in most cases, the
second and third is used before the verification
of the digital designs on real devices. All these
three possibilities of testing are supported by the
VHDL Simili simulator.

2.1.3 Example of testbench
As an example of a testbench used in the exercises, the
testbench for the Fibonacci numbers generator follows:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb_fib_gen is
end tb_fib_gen;

architecture behav of tb_fib_gen is
 component fib_gen
 port (
 clk : in std_logic;
 reset : in std_logic;
 result : out std_logic_vector(7 downto 0);
 overflow : out std_logic
);
 end component;
 signal clk, reset, overflow : std_logic;
 signal result : std_logic_vector(7 downto 0);
begin
 dut : fib_gen
 port map (clk, reset, result, overflow);
 testbench : process
 procedure do_clk is
 begin
 clk <= '0';
 wait for 20 ns;
 clk <= '1';
 wait for 20 ns;
 end;
 type tf_text is file of string;
 file fw : tf_text;
 variable tb_current, tb_last : integer;
 variable tb_result, int_res : integer;
 begin
 file_open(fw, "result.txt", write_mode);
 -- synchronous reset
 reset <= '1';
 do_clk;
 reset <= '0';
 -- test of first element of sequence
 int_res := to_integer(unsigned(result));
 write(fw, integer'image(int_res) & " ");
 if (int_res /= 0) then
 assert false report
 "Error at #1"
 severity error;
 end if;
 do_clk;
 -- test of second element of sequence
 int_res := to_integer(unsigned(result));
 write(fw, integer'image(int_res) & " ");
 if (int_res /= 1) then
 assert false report
 "Error at #2"
 severity error;
 end if;
 -- test of others elements of sequence
 tb_current := 1;
 tb_last := 0;
 for i in 3 to 15 loop
 do_clk;
 int_res := to_integer(unsigned(result));
 write(fw, integer'image(int_res) & " ");
 tb_result := tb_current + tb_last;
 tb_last := tb_current;
 tb_current := tb_result;
 if (overflow = '0') then
 if (int_res /= tb_result) then
 assert false report
 "Error at #" & integer'image(i)
 severity error;
 end if;

 end if;
 end loop;
 file_close(fw);
 assert false report
 "End of testbench."
 severity note;
 wait;
 end process;
end behav;

2.1.4 Example of digital design
The Fibonacci numbers generator used as the design
under test is described by the following listing:

-- fib_gen.vhd
-- Generator of Fibonacci numbers
-- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity fib_gen is
 port (
 clk : in std_logic;
 reset : in std_logic;
 result : out std_logic_vector(7 downto 0);
 overflow : out std_logic
);
end fib_gen;

architecture struct of fib_gen is
 signal last_val : unsigned(8 downto 0);
 signal curr_val : unsigned(8 downto 0);
 signal sum : unsigned(8 downto 0);
begin
 -- register for current value
 process (clk, reset)
 begin
 if (clk'event and clk = '1') then
 if (reset = '1') then
 curr_val <= to_unsigned(1, 9);
 else
 curr_val <= sum;
 end if;
 end if;
 end process;

 -- register for last value
 process (clk, reset)
 begin
 if (clk'event and clk = '1') then
 if (reset = '1') then
 last_val <= (others => '0');
 else
 last_val <= curr_val;
 end if;
 end if;
 end process;

 -- adder
 sum <= last_val + curr_val;

 result <= std_logic_vector(last_val(7 downto 0));
 overflow <= last_val(8);
end struct;

2.1.5 Compilation and timing simulation
After successful functional simulation by the testbench
described in section 2.1.3, the design is compiled by the
Quartus II software for the Altera EPM7128SLC84-7
device. The development system Quartus generates a
standard netlist VHDL Output File (.vho) and a Standard
Delay Format Output File (.sdo). A timing simulation,
using again the test bench in conjunction with previously
generated .vho and .sdo files, can then be performed.
The result of the timing simulation in VHDL Simili is
shown in Fig. 1.

Fig. 1: Screen shoot of timing simulation

3 Conclusion
Subject Programmable Logic Devices is now
successfully established in study programmes of Faculty
of Electrical Engineering and gives clear and logical
reading of basic terms of PLDs, digital designs and
VHDL language to the students.

References:
[1] Poupa, M.: Set of tasks for practice lessons of VHDL

language, University of West Bohemia, 2004
[2] Poupa M., Holota R.: Teaching of programmable

logic devices, Proceedings of the "Applied
Electronics 2001" international conference, 2001,
pp. 91-92

