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Abstract: In the recent PSpice programs, five types of the GaAs FET modelhave been implemented. However,
some of them are too sophisticated and therefore difficult tomeasure and identify afterwards, especially the
realistic model of Parker and Skellern. In the paper, simpleenhancements of one of the classical models are
proposed first. The resulting modification is usable for reliable modeling of both GaAs FETs and pHEMTs.
Moreover, its adjusted capacitance function can effectively serve as a convenient representation of microwave
varactors. The accuracy of these models can be strongly enhanced using the artificial neural networks – both
using an exclusive neural network without an analytic modeland co-operating a corrective neural network with
the updated analytic model are discussed. The accuracy of the updated analytic models, the models based on
the exclusive neural network, and the models created as a combination of the updated analytic model and the
corrective neural network is compared.
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1 Introduction
The Sussman-Fort, Hantgan, and Huang [1] model
equations can be considered a good compromise be-
tween the complexity and accuracy. However, both
static and dynamic parts of the model equations must
be modified when using them for possible pHEMT or
varactor modeling (i.e., for the devices that are often
used in the RF and microwave circuits). All the model
modifications defined in the paper have been imple-
mented into the authors’ program C.I.A. (Circuit Inter-
active Analyzer). However, the accuracy of the updated
model functions is still of a percentage order. To be
more precise, using the artificial neural networks can
be the effective and relative simple way because we can
utilize the standard MATLAB Neural Network Toolbox.
Emphasize that there are two possible ways of using the
neural networks. The first consists in approximating the
device by an exclusive neural network, the second com-
bines the analytic model with a corrective network.

2 Improvement of the Analytic Model
The diagram of the GaAs FET model is shown in Fig. 1,
which is applicable for all five PSpice modeling levels.

2.1 Modifying the Static Part of the GaAs FET
Model

The fundamental voltage-controlled current sourceId

of the GaAs FET model can be defined for the forward
mode (i.e., forVd = 0) by the updated model functions

VT = VT0 − σVd , (1a)

Id =

{

0 if Vg 5 VT ,

β (Vg − VT )n2(1 + λVd) tanh(αVd) otherwise,

(1b)

and by the mirrored equations for the reverse mode
(Vd < 0)

VT = VT0 + σVd , (2a)

Id =

{

0 if V ′

g 5 VT ,

β
(

V ′

g − VT

)n2(1 − λVd) tanh(αVd) otherwise,

(2b)

whereV ′

g = Vg − Vd – see the current and voltages in
Fig. 1.

The model parametersVT0, β, n2, λ andα have al-
ready been defined in [1], the parameterσ used in the
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Figure 1: Simplified diagram of the GaAs FET model, which in-
cludes the frequency dispersion.

“boxed” parts of (1) and (2) represents the updating
of the simpler classical models. Note that the Parker-
Skellern realistic model contains similar relations [2] as
a part of complicated internal functions – (1a) and (2a)
can be considered as their fundamental core.

Although the updated equations (1) and (2) are rela-
tively very simple, they contain an important improve-
ment in comparison with the classical Curtice model
[3] (n2 which characterizesgatevoltage influence onId

more precisely), and also in comparison with the classi-
cal Statz [3] model (σ which characterizesdrain voltage
influence onId more precisely).

2.2 Using the Modified Model as a pHEMT
Representation

The modifications (1a) and (2a) also enable the model
to be utilized for the pHEMT modeling – see the results
in Fig. 2. The identification process has set the model
parameters toVT0 = −1.64 V, β = 0.102 A V−2, n2 =
0.991, λ = −0.0288 V−1, α = 1.16, σ = 0.00797,
rD = 0.3Ω, andrS = 0.2Ω. As seen in Fig. 2, the rep-
resentation of pHEMT using (1) and (2) is quite precise
(rms ≈ 2 % only) and is slightly more accurate than
the TriQuint one in [4]. Emphasize that the suggested
model is also able to form a negative differential con-
ductance, which is illustrated in Fig. 2. On the other
hand, at very high frequencies, thes22 parameter does
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Figure 2: Results of the pHEMT model identification utilizing (1)
and (2) (rms = 2.38 % andδmax = 8.24 %). The measured data
are taken from [4].

not match the DC curves. Therefore, a corrective cur-
rent sourceI ′d must be added identified by thes parame-
ters measurement. Note that embedding the frequency
dispersion can also be performed in another more pre-
cise, but more complicated way, see [2].

2.3 Modifying the Dynamic Part of the GaAs
FET Model

In general, the GaAs FET gate capacitance is highly
nonlinear as shown in Fig. 3. Its definition splits into
the three parts [1], similar to those in the Statz and si-
milar models [2, 3]

Cg =
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εW arctan

√

φ0 − VT

VT − Vg

if Vg 5 VA,

Vg − VA

VB − VA

[

CJ0

(

1 −
VB

φ0

) −m
+

π
εW

2
− εW arctan

√

φ0 − VT

VT − VA

]

+

εW arctan

√

φ0 − VT

VT − VA

if Vg > VA

∧Vg < VB,

π
εW

2
+ CJ0

(

1 −
Vg

φ0

) −m
if Vg = VB ,

(3)
where the transitional region(VA, VB) is specified em-
pirically

VA = VT − 0.15 V, VB = VT + 0.08 V. (4)
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Figure 3: Suggested GaAs FET model function for the varactor
representation.

All the model parameters have been defined in [1] with
the exception of the “boxed”−m. This parameter can
be found in the recent PSpice programs only – all the
classical models always use the theoretical value−

1
2

in-
stead of−m.

2.4 Using the Modified Model as a Varactor
Representation

The microwave varactors are highly nonlinear with ob-
served dependencies similar to those in the GaAs FET
gate capacitances. Therefore, the functions in (3) can
be utilized after replacingCg andVg with the external
ones, i.e., withCG andVG. Let’s emphasize that such
“empirical” method is often used in the GaAs FET mo-
deling, especially in [2].

2.4.1 Testing the Varactors of Texas Instruments
Firstly, let’s demonstrate this idea by identifying the
Texas Instruments EG8132 [5] varactor – see the results
in Fig. 4. The identification confirms that the usage
of (3) enables more accurate approximation than the 6th

order polynomial that used in [5].
For this varactor, the optimization procedure has

given the values of the model parametersεW =
0.15711 pF, CJ0 = 1.0771 pF, VT = −2.7569 V,
φ0 = 23.451 V (!), and m = 12.827 (!). Of course,
the last two parameters do not have “physical” values,
which illustrates the necessity of using the general−m-
power in (3). From the physical point of view, the varac-
tor is not defined forVG > VB by the classical junction
capacitance function – however, this formula is suffi-
ciently flexible to approximate it.

2.4.2 Testing the Varactor of International Laser
Centre

Secondly, the highly nonlinear capacitance model of the
optical SACM APD layer structure MO457/4 [6] has
been identified. However, obtained results are more in-
accurate (rms = 6.21 % and maximum relative devia-
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Figure 4: Comparison of the TI EG8132 varactor model identi-
fication using (3) with the classical polynomial function (rms =
4.52 % andδmax = 13.7 % for the model suggested here). The
measured data are taken from [5], where the polynomial approxima-
tion a0+a2(VG−Va)−2+a3(VG−Va)−3+ · · · +a6(VG−Va)−6

has also been tested with the inaccurate results shown above(they
are drawn by the dashed curve).

tion δmax = 23.7 %) and therefore a plot of the results
is not included at this moment.

3 Applying Artificial Neural Networks
Therms deviations of the analytic models can be of the
percentage order – it is clearly illustrated in Sec. 2. To
obtain lesser values, the artificial neural networks are
often used [7] for modeling the RF devices. A detailed
description of the conception of the neural networks can
also be found in [7] with the emphasis to modeling the
nonlinear RF and microwave devices. There are two
main ways for using the artificial neural networks. The
first consists in utilizing an exclusive neural network,
i.e., without an analytic model, and the second uses a
neural network only as a correction tool of the differ-
ence between the measured data and the identified ana-
lytic model.

3.1 Utilizing the “Exclusive” Artificial Neural
Network

A neural network proposed for an approximation of an
element without a co-operation with an analytic model
can be named as “exclusive”. Firstly, the models iden-
tified in Sec. 2 have been approximated using the ex-
clusive neural networks to compare their precision with
the updated analytic models. Regarding all the artifi-
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Figure 5: Results of the ILC varactor model identification using
the exclusive neural network (maximum relative deviationδmax =
0.4 % only!).

cial neural networks, the standard multilayer percep-
trons (MLP) structure [7, p. 65] has been used. The
number of layers and the number of neurons in that lay-
ers have been carefully selected during many numerical
tests – the MATLAB Neural Network Toolbox has been
used [8] for determining all the weights of the selected
neural systems.

3.1.1 Enhancing the Accuracy of the Varactor
Model

The ILC varactor model has to be replaced by a neu-
ral network because the approximation with the analytic
function (3) was not ideal (the values ofrms andδmax

mentioned above). For characterizing the varactor, a
simple structure MLP-1-4-5-4-1 (including input/output
layers) has been used with the results shown in Fig. 5.
Let’s emphasize that the accuracy of this neural network
is sufficient and hence there is no need to use a correc-
tive neural network with the analytic model (3).

3.1.2 Enhancing the Accuracy of the pHEMT
Model

The exclusive artificial neural network has also been
used for approximating pHEMT – see the results in
Fig. 6 and Table I. Again, a relatively simple structure
MLP-2-5-4-5-1 has been selected. As shown in Table I,
the accuracy of the exclusive neural network has been
approximately ten times better than that for the updated
analytical model.
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Figure 6: Results of the pHEMT model identification using the ex-
clusive neural network of the MLP-2-5-4-5-1 structure (forall the
curves,rms = 0.2 %).

3.2 Utilizing the “Corrective” Artificial Neu-
ral Network

Secondly, a neural network can be used as a correc-
tion for the updated analytic model. In this case, only
the difference between the measured data and previ-
ously identified analytic model is approximated using
the neural network – such neural network can be named
as “corrective”. In Fig. 7, the difference between the
pHEMT measured data and previously identified analy-
tic model is shown and approximated using the correc-
tive neural network. The resulting accuracy of the up-
dated analytic model with the corrective neural network
is shown in Table I. It is clear now that this methodology
gives the best precision.

3.3 Limitations of Using the Artificial Neural
Networks

The artificial neural networks must be used cautiously.
The device must be measured in a large number of
points. Otherwise, we could obtain bizarre results as
shown for the GaAs FET in Fig. 8 – of course, the num-
ber of measured points is here insufficient for the se-
lected structure MLP-2-5-10-7-1.

4 Conclusion
A simple updating of the analytic model has been ver-
ified for the approximation of both GaAs FETs and
pHEMTs with the precision of a percentage order. An
unusual way is suggested for modeling the microwave
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Figure 7: Results of the identification of thedifferencesbetween the
measured data and updated analytical model shown in Fig. 2, which
is an outcome of the (slightly more complicated) correctiveneural
network MLP 2-8-10-6-1.

Table 1: Comparison of the accuracy of the updated analytic model
(Fig. 2) with the models created using the exclusive (Fig. 6)and
corrective (Fig. 7) neural networks, respectively.

rms (%)
VG (V) Analytic Neural network

model Exclusive Corrective
0.5 3.23 0.07 0.0006162
0 2.68 0.22 0.0005629

-0.5 2.39 0.16 0.0014
-1 1.85 0.26 0.0362
-1.5 1.23 0.27 0.1043

All curves 2.38 0.2 0.028

varactors using the modified GaAs FET capacitance
model function. Finally, using the exclusive and cor-
rective neural networks is tested and compared from the
point of view of accuracy. All the model parameters can
be easily identified from measured data.

AcknowledgementThis paper has been supported by the
grant of the European Commission TARGET (Top Ampli-
fier Research Groups in a European Team), by the Grant
Agency of the Czech Republic, grant No. 102/05/0277, and
by the Czech Technical University Research Project MSM
6840770014.

Measured data
Optimized model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Exclusive MLP-2-5-10-7-1

GV =  0V

GV =  -0.5V

GV =  -1.0V

GV =  -1.5V

VG=  -0.2V

V
D

(V)

I
D

(A
)

Figure 8: Incorrect results of the DZ 71 [9] GaAs FET model iden-
tification caused due to insufficient number of measured points.
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