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Abstract: In the recent PSpice programs, five types of the GaAs FET ni@la been implemented. However,
some of them are too sophisticated and therefore difficuthé@msure and identify afterwards, especially the
realistic model of Parker and Skellern. In the paper, singleancements of one of the classical models are
proposed first. The resulting modification is usable foratdk modeling of both GaAs FETs and pHEMTSs.
Moreover, its adjusted capacitance function can effelgtigerve as a convenient representation of microwave
varactors. The accuracy of these models can be stronglyneatiausing the artificial neural networks — both
using an exclusive neural network without an analytic maa®l co-operating a corrective neural network with
the updated analytic model are discussed. The accuracyeaipgtiated analytic models, the models based on
the exclusive neural network, and the models created as aication of the updated analytic model and the
corrective neural network is compared.
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1 Introduction 2.1 Modifying the Static Part of the GaAs FET
The Sussman-Fort, Hantgan, and Huang [1] model ~Model
equations can be considered a good compromise PRe fundamental voltage-controlled current soufge

tween the complexity and accuracy. However, bogtthe GaAs FET model can be defined for the forward

static and dynamic parts of the model equations muséde (i.e., fory > 0) by the updated model functions
be modified when using them for possible pHEMT or

varactor modeling (i.e., for the devices that are often Vi = Vo[ — oV, (1a)
used in the RF and microwave circuits). All the model 0 if vV, < Vi
modifications defined in the paper have been implél»:{ s g ="
mented into the authors’ program C.I.A. (Circuit Inter- B (Vg = Vr)*(1 + AVq) tanh(aVa) otherwise,
active Analyzer). However, the accuracy of the updated (1b)
model functions is still of a percentage order. To hg 4 by the mirrored equations for the reverse mode
more precise, using the artificial neural networks c < 0)

be the effective and relative simple way because we can

utilize the standard MATLAB Neural Network Toolbox. Vr = VTO, (2a)
Emphasize that there are two possible ways of using the V<V
neural networks. The first consists in approximating tljgz{ - &= T
device by an exclusive neural network, the second com- 2 (Ve = V)™ (1 — AVq) tanh(aVy) otherwise,
bines the analytic model with a corrective network. (2b)

. whereV, =V, — V4 — see the current and voltages in
2 Improvement of the Analytic Model Fig. 1.

The diagram of the GaAs FET model is shown in Fig. 1, The model parametengrq, 3, no, A anda have al-
which is applicable for all five PSpice modeling levelsieady been defined in [1], the parameteused in the
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r Figure 2: Results of the pHEMT model identification utilizing (1)
o and (2) fms = 2.38% anddma.x = 8.24 %). The measured data
p— are taken from [4].

Figure 1. Simplified diagram of the GaAs FET model, which iny ¢ a0k the DC curves. Therefore, a corrective cur-
cludes the frequency dispersion.

rent sourcd; must be added identified by thgparame-

ters measurement. Note that embedding the frequency
“boxed” parts of (1) and (2) represents the updatintispersion can also be performed in another more pre-
of the simpler classical models. Note that the Parkeise, but more complicated way, see [2].

Skellern realistic model contains similar relations [2] as

a part of complicated internal functions — (1a) and (22)3 Modifying the Dynamic Part of the GaAs
can be considered as their fundamental core. FET Model

. Although f[he updated equqtlons .(1) and (2.) are re|ﬁ'general, the GaAs FET gate capacitance is highly
tively very simple, they contain an important improve-

. ) . . . nPnIinear as shown in Fig. 3. Its definition splits into
ment in comparison with the classical Curtice mod

: . ) ffie three parts [1], similar to those in the Statz and si-
[3] (n2 which characterizegatevoltage influence oy .

. ; . ) milar models [2, 3]
more precisely), and also in comparison with the classi-

cal Statz [3] modeld which characterizedrain voltage b0 — Vi '
influence on/y more precisely). eW arctan T if Vo < Vy,
T g

: g Ve —Va VB

2.2 Using the Modified Model as a pHEMT ngv Co (1 — —) +
Representation b= A %o

The madifications (1a) and (2a) also enable the mo@gglz wg — eW arctan 4/ %] +
to be utilized for the pHEMT modeling — see the results r—’4
in Fig. 2. The identification process has set the model €W arctan $o—Vr if Vg > Vy
parameters t&’pg = —1.64V, 3 = 0.102AV 2, ny = Vi —Va
0.991, A = —0.0288V~!, a = 1.16, 0 = 0.00797, A Vg < Vb,
rp = 0.3Q, andrg = 0.22. As seen in Fig. 2, the rep- W v, _
resentation of pHEMT using (1) and (2) is quite precise | 7—~ + Cuo (1 - %> if Vg 2 V,
(rms =~ 2% only) and is slightly more accurate than ©)

the TriQuint one in [4]. Emphasize that the suggestgghere the transitional regiofi/4, V) is specified em-
model is also able to form a negative differential comyrically

ductance, which is illustrated in Fig. 2. On the other
hand, at very high frequencies, thg, parameter does Va=Vp—-015V, Vg=Vpr+0.08V. (4)
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Figure 3: Suggested GaAs FET model function for the varact =
representation.
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All the model parameters have been defined in [1] wii

@)

the exception of the “boxed>m. This parameter cans | ©

be found intherecentPS|oiceprogramsonly—allt%wO e
classical models always use the theoretical valgen- 8 12 - -10 -9 8 T 65 4 82 -0
stead of—m. Ve (V)

] . Figure 4. Comparison of the TI EG8132 varactor model identi-
2.4 Using the Modified Model as a Varactor fication using (3) with the classical polynomial functionms =

Representation 4.52% anddmax = 13.7% for the model suggested here). The

. . . . measured data are taken from [5], where the polynomial appes
The microwave varactors are highly nonlinear with oRon o+ a (Ve — V)2 +as(Ve — Va) 3+ - - +ae(Ve — Vi)~

served dependencies similar to those in the GaAs FEsE also been tested with the inaccurate results shown gthmye
gate capacitances. Therefore, the functions in (3) c&pdrawn by the dashed curve).

be utilized after replacing’, andV; with the external

ones, i.e., WithCc andVc. Let's emphasize that suchijon g,,.. — 23.7%) and therefore a plot of the results
“empirical” method is often used in the GaAs FET MQzs ot included at this moment.

deling, especially in [2].

3 Applying Artificial Neural Networks

2.4.1 Testing the Varactors of Texas Instruments h deviat fth v del be of th
Firstly, let's demonstrate this idea by identifying the€1ms deviations of the analytic models can be of the

Texas Instruments EG8132 [5] varactor — see the resfifcentage order —itis clearly illustrated in Sec. 2. To

in Fig. 4. The identification confirms that the usag%btam lesser values, the artificial neural networks are

of (3) enables more accurate approximation than the gften used [7] for modeling the RF devices. A detailed

order polynomial that used in [5] escription of the conception of the neural networks can

For this varactor, the optimization procedure hﬂso be found in [7] with the emphasis to modeling the
given the values of the model parameteid — nonlinear RF and microwave devices. There are two
0.15711pF, Cyo = 1.077T1pF, Vi = —2.7569V main ways for using the artificial neural networks. The

¢o = 23451V (1), and m = 12.827 (!). Of course first consists in utilizing an exclusive neural network,

the last two parameters do not have “physical” valuds without an analytic model, a_nd the second uses a

which illustrates the necessity of using the generai- neural network only as a correction tool o_f the_qllffer-

power in (3). From the physical point of view, the varaf’in,ce between the measured data and the identified ana-

tor is notdefined forVz > Vp by the classical junction ytic model.

capacitance function — however, this formula is suffi-

ciently flexible to approximate it. 3.1 Utilizing the “Exclusive” Artificial Neural
Network

2.4.2 Testing the Varactor of International Laser A neural network proposed for an approximation of an

Centre element without a co-operation with an analytic model
Secondly, the highly nonlinear capacitance model of tben be named as “exclusive”. Firstly, the models iden-
optical SACM APD layer structure MO457/4 [6] hagified in Sec. 2 have been approximated using the ex-
been identified. However, obtained results are more @usive neural networks to compare their precision with
accurate fms = 6.21 % and maximum relative devia-the updated analytic models. Regarding all the artifi-
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._Figure 6: Results of the pHEMT model identification using the ex-
Qusive neural network of the MLP-2-5-4-5-1 structure (&dirthe

the exclusive neural network (maximum relative deviatdgRx =
( X curves,rms = 0.2 %).

0.4 % only?').

cial neural networks, the standard multilayer percep:2 Ultilizing the “Corrective” Artificial Neu-
trons (MLP) structure [7, p. 65] has been used. The ral Network

number of layers and the number of neurons in that Iagécondly a neural network can be used as a correc-
ers have been carefully selected during many numeriﬁgh for the updated analytic model. In this case, only
tests — the MATLAB Neural Network Toolbox has bee{he difference between the measured data and previ-

used [8] for determining all the weights of the S(':'Iec'[ef)qdlsly identified analytic model is approximated using

heural systems. the neural network — such neural network can be named
as “corrective”. In Fig. 7, the difference between the

3.1.1 Enhancing the Accuracy of the Varactor pHEMT measured data and pr«_awously |d_ent|f|ed analy-
Model tic model is shown and approximated using the correc-

tive neural network. The resulting accuracy of the up-

The ILC varactor model has tq be _repla_c ed by a nedjéted analytic model with the corrective neural network
ral network because the approximation with the analy}Ecshown in Table I. Itis clear now that this methodology
function (3) was not ideal (the values afis and ;.5 gives the best precision

mentioned above). For characterizing the varactor,” a

simple structure MLP-1-4-5-4-1 (including input/output

layers) has been used with the results shown in Fig-33 Limitations of Using the Artificial Neural
Let's emphasize that the accuracy of this neural network ~ Networks

is sufficient and hence there is no need to use a COrr¢ge artificial neural networks must be used cautiously.
tive neural network with the analytic model (3). The device must be measured in a large number of
points. Otherwise, we could obtain bizarre results as
. hown for th FET in Fig. 8 — of rse, the num-
3.1.2 Enhancing the Accuracy of the pHEMT shownfort eGaAs_ nrg 8. ot course the nu
ber of measured points is here insufficient for the se-

Mod_el o lected structure MLP-2-5-10-7-1.
The exclusive artificial neural network has also been

used for approximating pHEMT — see the results in .

Fig. 6 and Table I. Again, a relatively simple structurd ~ Conclusion

MLP-2-5-4-5-1 has been selected. As shown in TableN,simple updating of the analytic model has been ver-
the accuracy of the exclusive neural network has baéed for the approximation of both GaAs FETs and

approximately ten times better than that for the updateHEMTs with the precision of a percentage order. An
analytical model. unusual way is suggested for modeling the microwave
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Figure 8: Incorrect results of the DZ 71 [9] GaAs FET model iden-

Figure 7: Results of the identification of ttdifferencedbetweenthe | " . - :
tification caused due to insufficient number of measuredtpoin

measured data and updated analytical model shown in Fichizhw
is an outcome of the (slightly more complicated) correctieairal
network MLP 2-8-10-6-1.
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