
Real-time control implementation for MS Windows 2000/XP
operating systems

FOJÍK DAVID, BABIUCH MAREK

Department of Control Systems & Instrumentation 352
VSB - Technical University of Ostrava

av. 17. listopadu 15, CZ 708 33 OSTRAVA - PORUBA
CZECH REPUBLIC

Abstract: - The article describes the add-on implementation of MS Windows NT operational system for real-time
control. It is based on a possibility of executing time critical operation at the lower layers of an operational system, in
particular at the interrupt handling. In this way timers of added devices (conventional multifunction measuring cards)
are used for precise sample period generation within tens of microseconds order as IRQ request form.

Key-Words: - Real-time, MS Windows, Automatic control, Data acquisition card, Interrupt, IRQ

1 Introduction
Architectures of PC type computers are the subject of the
permanent interest of control systems designers. Their
relatively low price, permanent increase of power, wide
support of modern software and hardware components
and variety of producers are strong arguments for their
use. Furthermore, an important fact is that they are at the
present time, essential and sometimes the only one
platform for the entrepreneurial information systems.
Applications for PC therefore offer the possibility how
to easily build quite uniform company system. This will
significantly reduce investment into them.
 In order to satisfy this requirement it is also necessary
to unify used operation systems. The operation systems
of the MS Windows NT type obviously dominate the PC
platform (this summary name covers, to make it clearer,
the operating systems of MS Windows NT, MS
Windows 2000 and MS Windows XP). In this
connection, the legitimate requirement appears for using
these named operating systems also for the operation of
applications working in real time.
 The producer himself acknowledges this fact, since
he offers the specialized versions of MS Windows NT
Embedded and MS Windows XP Embedded operating
systems, and what is more, he takes part in the
development of real time RTX complement of a high
quality (Real Time eXtension; by VenturCom Company).
In certain cases this complement doesn’t have to entirely
suit the user. Not because it would not enable the
implementation of some tasks, but rather the opposite it
can require simpler, cheaper and already specialized
solution, which will be immediately ready to use without
further need for understanding new environment and
creating new algorithms. This contribution is describing
one of such specialized software solution:
The complement for the area of a real time control.

2 Real-Time and MS Windows NT
architecture
It is commonly known that the Windows NT operating
systems are not designed for real time execution. This
has been the topic of many articles before, which give
detailed explanations for all the reasons. We will not
discuss here again, which criteria the Windows NT
system does not satisfy and why it cannot be considered
as the real time system, so we will only focus on those
aspects which essentially complicate their use of
specialized applications for control and monitoring in
real time. The systems requirements for these
applications are at the minimum the following:
• Immediate access to hardware – I/O unit,
• Precise, fast and always reliable timer, which ensures

repeatable awakening of a control task within a given
moment (control sampling period),

• Uninterrupted operation within the time period,
consisting of acquisition of the controlled variable,
the computing of the control algorithm and the
execution of the actuating variable.
In order to understand how the Windows NT
operation systems satisfy or fail the mentioned
requirements it is necessary to briefly mention their
architecture.

 Firstly, it is necessary to say that the system
distinguishes two working modes: the user and the kernel
mode. All the running applications (processes) without
any exceptions work in the user mode, from which they
cannot directly access the hardware. Processes depend,
in this way, on drivers for those devices, with which they
communicate via Win32 API subsystem services.
 Each process (running application) owns at least one
computing thread, which executes process code. Each
thread of the all processes is alternatively processed by
the processor. The scheduler decides which thread

should run, according to current thread’s needs and
assigned priorities. For example, the thread with the
highest priority can be put asleep for a certain time or it
can wait till the source detaches, which will release the
run of threads with the lower priority. Time and
synchronisation functions of Win32 API (in short timers)
work on the similar principle. The thread simply goes to
sleep after a certain instruction was executed, and waits
until the timer wakes it up again.

Fig. 1 MS Windows NT architecture - all priority levels

 For these purposes the system offers more than just
few tools, which can be theoretically set with accuracy
up to one millisecond. In practice, such accuracy can
only be reached under certain conditions with a
multimedia timer. Nevertheless, even this timer cannot
be used for the real time operation. The reason lies in the
scheduler itself, which in addition depends on other
priority settings, so called the IRQ (Interrupt ReQuest)
level. The system distinguishes 32 of such levels, where
the highest priority has the IRQL 31 level and the lowest
IRQL 0 level. And the scheduler (as well as all of the
threads) runs just exactly at the lowest IRQL 0 or IRQL
1 levels by their priority. All interrupt handling services
and tasks from DPC (Deferred Procedure Call) queue
run at higher levels, which calls interrupt handling again.
These tasks are not mostly critical, however they are
very often time consuming.

3 Functional principle of the
complement design
The above mentioned imperfections can be avoided with
postponing timely critical operations into the lower
levels of an operating system, more precisely into the
interrupt handling of hardware timer. Just this option is
the base for this presented design, which utilises abilities
of the most multifunctional data acquisition cards
available at the present time. It is the interruption

generated usually as a consequence of the end of one or
a set of samples measurements. As a reaction to this
interruption, the handling of specially designed driver is
initiated, the entire code of the control algorithm will be
executed then. The user application serves the role of
only some intermediation; with which the user selects a
type and parameters of the controller, or visualises or
processes in some other method data with information
about the course of control. This principle is explained
the best in the following text and Fig. 2:
1. the user application transfers, at first, to the driver

according to user choice data about a controller type,
including all input parameters used, and so on,

2. then the driver introduces the certain interruption
handling, sets the measurement multifunction card’s
circuits and initiates the timer so that the required
sampling period is ensured,

3. since this time, accurately and absolutely
independently on the computer state, the timers of a
data acquisition card runs repeatable the A/D
conversion, so the card generates an interrupt request,

4. with this request the hardware finds out together with
the operating system the priority, and if it is
evaluated as the highest, then it begins immediately
its handling,

Fig.2 Principle of a complement’s activity

5. interrupt handling reads the already measured input

value, executes the certain computation and
immediately sets the output,

6. if the user application requested for continuous
information earlier, this routine, will before its end
write the variables’ states into a cache memory.

 After the writing into a cache memory the application
hands over its content through this task into DPC queue
back to the user application, which will process the data
according to the user. From the point of view of the real

time needs this design brings many advantages. Let’s
mention just the most interesting ones:
• Since the timing is generated by independent

hardware counters, it is possible to select sampling
period independently on the system usually with the
accuracy of one microsecond. In addition with most
of the cards, the counters will initiate A/D conversion
themselves and only after they generate the
interruption; in this way, the sampling is absolutely
precise and at the same time, the time delay does not
occur while waiting for conversion’s end.

• Since all drivers’ activities are performed in the
kernel mode, it is possible to access directly and
without any limitations to computer’s hardware, it
means to the registers and a memory of the card.

• The interrupt handling executes at the high IRQ level
so that the system tasks hand over data about the
course of control including the thread activities,
which are processing them, they cannot influence the
control itself.

 As it happens, the advantages on one hand are
accompanied by the disadvantages on the other hand.
This principle also brings several complications, which
must be solved or significantly limited. The fundamental
complications of the described design are:
• The realisation is very program demanding. Design

of drivers requires experienced programmer with
knowledge of C language, Windows NT architecture
and I/O system function principles. The necessary
compilers and quality documentation with examples
can be acquired in DDK (Device Driver Kit) set at
the Microsoft web server. Driver debugging requires
in addition another computer with a special version
of operating system installed (Check Build). (all
detailes can be found in DDK.)

• The drivers do not have support for floating point
operations, which is essential for control algorithm
design.

• The algorithm on its own is executed by driver
therefore any adjustment of existing or added new
algorithm requires an intervention into this driver.

• The driver is dependent on a concrete data
acquisition card type, so that other types require a
new design of a driver.

• Each type of a controller can have different setup
parameters, so any change or addition to the
algorithm requires similar intervention into the
communication protocol and the user application.

• Although sampling with hardware counters and
interruption generation are absolutely accurate,
however they do not guaranty immediate initiation of
handling. As it was previously mentioned, individual
handlings are processed according to IRQ levels, so
that the algorithm execution itself can be delayed

while the handling is performed with a higher
priority. At the same time, trouble occurs with
computing the actuator’s action based on a relatively
outdated value. It is obvious that the problem is the
more significant the lower priority the handling has
and the more the interruptions occur of a higher
priority.

4 Implementation and structure of a

complement
In the previous chapter, the functional principle of the
software solution together with its problems was shown.
The following text is focused on the description of the
implemented complement, which functionally
correspond to this principle. The complement is not a
final solution, but it is only a specialised „semi-product“
offering a set of mutually cooperating libraries and
modules, which enable the easy building final solution.
The complement solves many of the mentioned
problems. Other problems (for example the problem
with various time responses to incurring interruption) are
fully solved at the levels of individual modules and
libraries.

4.1 Minimisation of the variance of time
responses to incurred interruption
From the point of view of the brief description it can be
wrongfully concluded, that the entire problem can be
solved within the increase of the IRQ level.
Unfortunately, this is not the case. It is all much more
difficult and depends on many factors, such as on the
kernel implemented mechanism of interrupt handling,
which is not unified and is significantly influenced by a
computer hardware (namely by a interrupt controller)
and the version of an operating system (it works
differently in Windows NT, in Windows 2000 or
Windows XP).
 Two types of controllers can be found at the PC
platform. The older one, usually marked as PIC
(Programmable Interrupt Controller) is based on cascade
connected circuits 8259A, which were used with Intel
8080 processor already. In spite of its age it was
exclusively used in all single processor systems until the
Pentium 4 processor release. The newer controller is the
APIC (Advanced Programmable Interrupt Controller),
which was developed especially for the need of multi-
processor systems.
 From our point of view it is interesting to see that,
when the older controller is used in the computer, the
IRQ level of the corresponding handling is
unambiguously given by the interrupt channel. It is
consequently always clear at which level the one or the
other request will be processed in a standard way.

Table 1: IRQ levels and the IRQ request relationship
in systems with PIC circuits

IRQL IRQ Description

31 - Machine checks or bus errors
30 - Power failure notification
29 - Interprocessor request
28 0 Timer
27 - Profiles
26 1 Keyboard
25 2 INT from slave PIC
24 3 COM2/COM4
23 4 COM1/COM3
22 5 Reserve /Sound card
21 6 Floppy disk
20 7 Parallel port
19 8 Real-time clock
18 9; 2 IRQ2 or IRQ9
17 10 Reserve
16 11 Reserve
15 12 PS/2 - computer mouse
14 13 Mathematic coprocessor
13 14 Hard Disc
12 15 Reserve

4-11 - No use
3 - Debugger execution (SW interrupt)
2 - DPC (SW interrupt)
1 - APC (SW interrupt)
0 - Execution Win32 API threads

 When the newer APIC is used, this relation does not
exist. Each system installation can have different levels
adjoined. In other words, the same version of an
operating system with the same hardware can have
adjoined a different IRQ level for the same channel. So
far, the relation of the complement with a standard
interruption controller, which can be very often used
with the newest systems through BIOS, is satisfactorily
being solved. With specific algorithms the change of
behaviour was reached so that handling of a defined
request is almost in all cases preferentially performed.
The exception is when handling of another request has
been already initiated with initially higher priority. But
even after this it is in the imaginary queue of awaiting
requests in the first position. The resulting effect can be
shown the best in Fig. 3. It can be seen here the relation
of the time response variance on the initiated
interruption cased by absolutely the same conditions at

the same system, however with the primary interrupt
handling first, and then with the adjusted one.

Fig. 3 The difference in time response variance
between the standard and adjusted mechanisms

4.2 The complement architecture
The whole complement consists of three mutually
cooperating parts:
1. a low level driver,
2. levels simplifying communication between driver

and applications,
3. user control application.
These parts together create an easily implemented
complement, which enables immediate realisation of
control for SISO (single input single output) circuits. For
MIMO (multi input multi output) circuits it is necessary
to complete the driver with a corresponding algorithm.
The driver itself is commonly constructed, which means
that it requires adjustment for a concrete type of
multifunctional card.

4.2.1 Common low-level driver
The most important part is commonly designed low
level driver, whose architecture (Fig. 4) enables easy
adjusting to an optional type of a multifunctional data
acquisition card, which however satisfies necessary
requirements for timer existence and ability of
interrupting generation. The driver itself consists of
three layers:
• Interface layer,
• Logic – functional layer,
• Physical layer.

Fig. 4 Driver structure

 Kernel is created with a logic – functional layer,
which ensures all functions (including control, loading
and driver installation, etc.) and saves all settings. This
layer does not accesses data acquisition means nor
communicates with Win32 API applications. These
activities are ensured by two neighbouring layers, which
it closely cooperates with. The physical layer is used for
the direct access to hardware, which depends, as the
only one, on a concrete data acquisition card. The lowest
layer of the interface ensures communication with
Win32 API environment. This one is created in a way
that it is not dependent on a concrete type of a
multifunctional card (it covers, therefore, all accessible
types) and it enables easy extending of a functional layer
with new types of tasks, as well.. Thanks to this concept
it is very easy to transfer solution on another type of a
multifunction data acquisition card – basically it is
necessary to modify only the function frames of a
physical layer.
 Driver architecture also keeps in mind the extension
by other types of controllers. Internally, the logic –
functional layer is divided in a fixed part, which does
not change, and a part, in which control algorithms are
implemented. This part is divided not only logically, but
physically as well; therefore new algorithms can be
easily implemented. Common types of controllers are

implemented in the driver as the standard utility. For
example, PID controller is available here in its common
positioning and an incremental version with the option
for adding filter either separately with a derivative part
or a controlled variable.
The functional library, which implements basic
arithmetic operations with floating numbers, is created
especially for this purpose to ensure design of new
algorithms without problems. These algorithms can be
created separately from the driver in a prepared
application for Windows, which makes the design
significantly easier by simulating the driver activities,
and enables transferring these algorithms after they were
debugged into a driver.

4.2.2 Communication layers
Although the driver is able to control applications on its
own, it will not manage without communication with
Win32 API applications (Fig. 5). The driver needs to
know, at least, the type and parameters of a controller,
used inputs and their voltage range and needs to get a
command for starting control. Further more, the
application may require information about a course of
control, which is consequently processed, etc. It is
obvious, that communication is very important.

Fig. 5 Communication with a driver

 The communication is cared about at the level of a
driver by an interface layer. Any application has the
access to this layer through Win32 API subsystem. The
direct communication with an interface layer is not,
however, easy. There is a great demand on all
programmers to know much about not only principles of
this interface, but common knowledge about
communication between applications and a driver. That
is why a library of functions for easy access was created
to make their work easier. In its own principle, this
library overlaps the common Win32 API subsystem
function with its own functions, which were especially
developed for data exchange with a driver interface.

At the present time the driver is implemented within two
data acquisition multifunction cards, PCA 1408 and
PCA 1208. In both of the cards all functions and
properties were verified as well, the algorithm
functionalities were verified on the control model of
electromagnetic levitation. To make it more unbiased
the driver was tested on several system settings with
different power, with a range of processors from
Pentium 90 MHz up to Pentium 4 with 2 GHz
frequency. The system was always able to safely ensure
the control with sampling frequencies at least of 10 kHz.
The system was intently loaded during the tests by
selected tasks (for example copying CD-ROM content to
a hard disk drive, network communication and so on.).
These tasks, however, fundamentally never influenced
the sampling periods, or the control itself.

But even this library is not easily being used, especially
when an application is created in other programming
languages than C or C++. That is why a COM
component was created, which “puts” the entire
communication into an object-oriented structure. A
component is again designed with regards to other
extensions of a driver or another data acquisition card.
Thanks to this component it is possible to create
applications in any programming language, for example
preferred MS Visual Basic and similar.
 It is possible to integrate the driver through these
mentioned tools into any application, while the
programmer can choose a method of communication,
which suits him the best. He can then decide according
to current options or needs, or he can choose a
combination of those methods.

 This solution „does not catapult“ the operating
systems of Windows NT architecture into the system
category of the real time operation, however, it enables
easy implementation of the control of systems
demanding promptness and runtime execution. It is, in
this way, an interesting alternative for the control area in
laboratories and in industry, where architecture of MS
Windows NT is requested together with high flexibility
and prompt and easy implementation.

4.2.3 User application
The last part of a design is a user operating application,
which intermediates all functions of a complement in a
user-friendly environment. Shortly, this application
enables selecting and setting all supported types of
controllers, monitoring and visualising a course of
control and exporting data recorded into text files, or
MS Excel files respectively. An application is not, again,
bound to a concrete type of a driver, therefore it
cooperates with any data acquisition card, or with any
compatible driver.

References:
[1] FOJTÍK, D. System Modules Implementation for

Process Control Support at MS Windows NT
Operating System. Ostrava: Department of Control
Systems & Instrumentation 352, VŠB-TU Ostrava,
2004. 188 pages, Dissertation thesis.

[2] MICROSOFT Microsoft Windows 2000 DDK. Redmond:
Microsoft Corporation Redmond USA, June, 2000.

[3] LANDRYOVÁ, L. SCADA Applications based on
.NET Architecture. In 5th International Carpathian
Control Conference. Zakopane, Poland : AGH-UST
Krakow, 25. – 28. 5. 2004, pp. 313-318. ISBN 83-
89772-00-0.

[4] ŠKUTA, J. Web Cam Using for Real-time Tasks
Monitoring in Control Web 2000 System. In
Proceedings of 3rd International Carpathian Control
Conference. Ostrava : VŠB-TU Ostrava, 27. - 30. 5.
2002, s. 463-467. ISBN 80-248-0089-6.

Fig.5 User operating application [5] KULHÁNEK, J. The Speed of Component-Based
Application in .NET Platform. In 5th International
Carpathian Control Conference. Zakopane, Poland :
AGH-UST Krakow, 25. - 28. 5. 2004, pp. 843-848.
ISBN 83-89772-00-0.

5 Conclusion
The complement is with its specialisation and, at the
same time, with an adjustable architecture at the
borderline of a development mean and the final solution.
The end users will be rather interested in an already
bound complement with the concrete multifunctional
card. A common driver solution is, for a change,
interesting for the data acquisition card producers.

[6] WAGNEROVA, R. Robust Control Design for
Technological Processes. In 5th International
Carpathian Control Conference. Zakopane, Poland :
AGH-UST Krakow, 25. – 28. 5. 2004, pp. 289-294.
ISBN 83-89772-00-0.

