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                                                                            Abstract  
This paper proposes three exponentially correlated acceleration approaches for accuracy and computational 
complexity. These models are Singer model, Bar-Shalom and Fortmann’s model. Simulation results show 
that the Singer models and the Bar-Shalom and Fortmann models, each a six state estimate model, require 
approximately the same number of flops. The Bar-Shalom and Fortmann model requires more flops due to 
the size of the Q and G matrices. The Sklansky model is a four state estimator and requires about 2/3 of the 
number of flops of the Singer model. 
 
1 introduction 
Tracking a maneuvering target involves filtering 
and prediction in order to track the target. 
Filtering refers to estimating the state vector at 
the current time, based upon all past 
measurements. Prediction refers to estimating the 
state at a future time; we shall see that prediction 
and filtering are closely related [1]. One of the 
most commonly used technique for target 
tracking is the discrete Kalman filter developed 
by Rudolf Kalman. The Kalman filter is used to 
filter past measurements and predict where a 
target will be in the future. This target location 
prediction is then used to point a sensor in order 
to track the target. An error covariance matrix is 
maintained as part of the normal computation 
process of the Kalman filter. This error 
covariance matrix can be considered as a 
measure of uncertainty of the kinematic state of 
the target. The tracking of maneuvering targets 
may be complicated by the fact that acceleration 
may not be directly observable or measurable. 
Additionally, apparent acceleration can be 
induced by a variety of sources including human 
input, autonomous guidance, or atmospheric 
disturbances. Several approaches to tracking 
maneuvering targets have been proposed in the 
literature and can be divided into two categories. 
One approach is to model the maneuver as a 
random process. The other approach assumes 
that the maneuver is not random and that it is 
either detected or estimated in real time. Both 
assume a rectilinear model of target track. The 
random process models generally assume one of 
two statistical properties, either white noise or an 
autocorrelated noise. The multiple-model 
approach is generally used with the white noise 
model while a zero-mean, exponentially 
correlated acceleration approach is used with the 
autocorrelated noise model. The nonrandom 
approach uses maneuver detection to correct the 

state estimate or a variable dimension filter to 
augment the state estimate with an extra state 
component during a detected maneuver [2]. The 
exponentially correlated acceleration model 
approach is one of the approaches most widely 
used to track maneuvering targets. This paper 
examines and compares three exponentially 
correlated acceleration approaches for accuracy 
and computational complexity. They include the 
Singer model in polar coordinates, the Sklansky 
model (not an exponentially correlated 
acceleration), and Bar-Shalom and Fortmann’s 
model. 
 
2Singer Model Using Polar Coordinates 
 
Singer [8], [7], developed a model that 
incorporates the maneuver capability of a target 
that is both simple and suitably represents the 
maneuver characteristics. The Singer model for 
manned maneuvering targets assumes that a 
target usually moves at constant velocity and that 
turns, evasive maneuvers, and accelerations due 
to atmospheric disturbances can be viewed as 
perturbations of the constant velocity trajectory. 
These accelerations are termed target maneuvers 
and are correlated in time with the previous time 
or the next time increment. That is to say that if a 
target is maneuvering at time t, it is likely to be 
maneuvering at time t+ τ  assuming that τ  is 
sufficiently small. Singer [8] states that a lazy 
turn will give correlated inputs for up to one 
minute, evasive maneuvers due to radar detection, 
terrain features, or preprogrammed maneuvers 
will provide correlated inputs for 10 to 30 
seconds, and atmospheric turbulence for only 1 
to 2 seconds. Due to this time dependence, the 
maneuvers are neither additive nor Gaussian. 
Singer’s probability density function for a 
target’s maneuvers are shown in Figure 1. A 
target can [8]: 



- Accelerate (maneuver) at its maximum rate, ±  
Amax with a probability of Pmax 
- No maneuver with a probability of P0, or 
- Maneuver between - Amax and + Amax 
according to the uniform distribution shown in 
Figure 1. 
 

 
 

Figure 1: Target maneuver probability density 
function [7] 

 
In order to use this model in an optimal filter 
such as a Kalman filter, the maneuver noise 
needs to be whitened. Singer [7] uses a 
procedure analogous to the whitening procedure 
developed by Wiener and Kolmogorov. The 
whitening processes are done by augmenting the 
state vector to include the maneuver variables 
and expressing them recursively in terms of 
white noise. 
The target maneuver model is in polar 
coordinates and given by the state equation 
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R=target range 
The measurement equation is given by 
Zk =H Xk + Vk 
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The standard filter equations for state estimation 
extrapolation, error covariance extrapolation, 
Kalman gain matrix computation, state estimate 
update, and error covariance updates are then 
applied. The filter is initialized based on the first 
two observations with the state estimate given by 
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covariance matrix, P+
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.3Sklansky Model 
 
The Sklansky model is a Cartesian coordinate, 
constant velocity tracking algorithm that does 
not model acceleration to generate position and 
velocity estimates of maneuvering targets [10]. 
The target motion is described by 
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where 
=nX  target position 

=nX&  target velocity 
 
T = time interval between observations 

=nX&& target acceleration 
_ 
_ _ 
The state space representation of the Sklansky 
model is given by 

kkkkk aGXX +Φ==1  
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[ ]Tyxk kukua )()(=   =random acceleration in 
the x and y coordinate respectively 
Vk = scalar random measurement noise with Q ~ 
N(0 ,1 ) 
 
4 Bar-Shalom and FortmannModel 
 
Another exponentially correlated acceleration 
model based on the Singer Model is presented by 
Bar-Shalom and Fortmann [2]. They use a linear 
shaping filter to augment the Kalman filter. 
The continuous-time state equation and 
measurement model is 
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The discrete-time state equation corresponding to 
(24) with sample interval T is 
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The discrete-time process noise covariance 
matrix Q is given by 
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5 SIMULATION AND  Model Comparisons 
The three models described above where tested 
using Monte-Carlo simulations with 50 
replications in order to compare the state 
estimation performance of each model. Two 
different target paths [11] were used in the 
simulations. The first was a target performing an 
S turn lasting 40 seconds and the second is also a 
S turn maneuver but with an straight segment 
between turns and lasts for 80 seconds. The 
target paths are shown in Figure 2 while Table 1 
provides a summary of the maneuver parameters 
used in the simulations. Figure 2a is the 



simulated target path for the S turn without the 
straight segment and Figure 2b is the simulated 
target path for the S turn with the straight 
segment. The “x” denotes the starting position. 
 
 

 
          a) S turn without straight segment  
 
 
                              

 
         b) S turn with straight segment 

Figure 2:  Simulated Target Paths 
 
Table 1: Kalman Filter Simulation    Parameter 

Summary   

 
The remaining model specific parameters and 
initial error covariance matrices needed to 
perform the filter simulations are as follows: 
Singer (Polar)                            Pmax  = 0.1 
 P0 = 0.4                    Q as defined in ( 4-4 ) 
 P initialized according to ( 4-7 ) 

 Sklansky           







=

10
01

Q  

 P initialized with [100000 1000 100000 1000] 
along the main diagonal 
 Bar-Shalom and Fortmann 

6/maxAm =σ  
P initialized with  
[100000 1000 1000 100000 1000 1000]  
along the main diagonal All of the models 
performed exceedingly well with extremely 
small average position and velocity errors and 
RMS position and velocity errors regardless of 
target path used. Figure 3 and Figure 4 show the 
average range and bearing errors, respectively, 
for both target paths. The average range errors 
are less than ±4 meters for either target path 
while the average bearing error is between ±0.3°. 
The average range and bearing rate errors are 
show in Figure 5 and Figure 6 while the RMS 
range and bearing errors are shown in Figure 7 
and the RMS range and bearing rate errors are 
shown in Figure 8. The average range rate error 
is between ±5 m/s and the average bearing rate is 
between ±0.4 deg/s. The RMS errors are 2-4 
meters for range, 0.3-0.6 m/s for range rate, 0.5-
2° for bearing and 0.05 deg/s for bearing rate. 
 



          a) S turn without straight segment                              

 
              b) S turn with straight segment 
  

Figure 3: Singer Model (Polar) Average          
Range Erro 

     

  
 a) S turn without straight segment                                       

 
        b) S turn with straight segment 
Figure 4: Singer Model (Polar) Average Bearing 

Error 

   a) S turn without straight segment 
             

 
        b) S turn with straight segment 
 
Figure 5: Singer Model (Polar) Average Range 

Rate Error 



 a) S turn without straight segment                                  

 
b) S turn with straight segment 

Figure 6: Singer Model (Polar) Average Bearing 
Rate Error 

  a) S turn without straight segment                                           

 
b) S turn with straight segment 

Figure 7: Singer Model (Polar) RMS Range and 
Bearing Error 

  a) S turn without straight segment    

 
b) S turn with straight segment 

Figure 8: Singer Model (Polar) RMS Range Rate 
and Bearing Rate Error 

Table 2: Maneuvering Target Model Complexity 
 

Model Number of flops 
One-Siger(Polar) 2270 

Sklansky 896 
Bar-Shhalom & 

Fortman 
2946 

 
 

8 Summary 
 
The exponentially correlated acceleration models 
appear to be valid and accurate models of target 
maneuvers as demonstrated above. All of the 
model, whether in polar, Cartesian, or polar 
converted to Cartesian provide very accurate 
position estimates. Besides state estimate 
accuracy, another consideration in choosing a 
maneuvering target tracking model is the 
computational complexity of the model. One 
such measure is the number of floating point 
operations (flops). 
 
 Table 2 shows the number of flops for one 
iteration of state estimate extrapolation, error 
covariance extrapolation, Kalman gain matrix 



computation, state estimate update and error 
covariance update for each model. The 
conversion of the measurement noise covariance 
matrix from polar to Cartesian coordinates only 
add an additional 32 flops. As can be seen, the 
Singer models and the Bar-Shalom and 
Fortmann models, each a six state estimate 
model, require approximately the same number 
of flops. The Bar-Shalom and Fortmann model 
requires more flops due to the size of the Q and 
G matrices. The Sklansky model is a four state 
estimator and requires about 2/3 of the number 
of flops of the Singer model. The flops were 
computed for comparable runs of each model 
averaged over 80 iterations of the update process 
using MATLAB. 
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