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Abstract: - This paper deals with structural properties of a class of asymptotic filters from the filter banks design point
of view. It is shown that both, the continuous- and discrete-time lattice filter structures can be derived as a natural
consequence of strict causality, minimality and asymptotic stability requirements. An abstract form of classic
Tellegen’s relation is introduced and used as a basic design tool expressing the signal energy conservation law for
filter state space representations. It is demonstrated that in discrete-time version the resulting asymptotic filter bank
structure contains the well known direct FIR filter structure as special case.
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1   Introduction
Many various structures for implementing filters have
been developed. There are basically two, both
intrinsically linear, but fundamentally different
approaches to the signal filtering. The first one leads to
frequency filters. In few last decades the state space
filter representations have played the growing role,
mainly in context of the stochastic optimal Wiener-
Kalman-Bucy filtering. It has been shown in [3] that
both the stochastic and frequency filtering techniques
have some common roots and can be exposed as special
cases of the so called asymptotic filtering design
philosophy. In this contribution some fundamental
properties and structural features of both the
continuous-time and discrete-time asymptotic filter state
space representations are studied and used for filter
banks design. The goal of the contribution is to show
that asymptotic filter banks based on generalized
Tellegen’s principle [1] can be derived by a
straightforward way from natural requirements of strict
causality, energy conservation, asymptotic stability and
state minimality.

2   Continuous and discrete-time
generalization of Tellegen’s principle
The new concept of asymptotic filtering has been
introduced in [3], [4], [5] and [6]. Certainly, any
realizable filter has to fulfil some causality and energy
conservation requirements. The Tellegen’s theorem is
known to be one of the most powerful tools of system
analysis and synthesis in electrical network theory. It

asserts that Kirchhoff’s laws are sufficient for energy
conservation in an electrical network. Let us briefly
summarize the essential features of the original version
of Tellegen’s theorem [12]. Assume that an arbitrary
connected electrical network of  b components is given.
Let us disregard the specific nature of the network
components and represent the network structure by an
oriented graph  with  n  vertices and  b branches. Let
the set of Kirchhoff  law constraints be given in a  form

Ai = 0 Bν = 0                       (1)
where A is a node incidence matrix, B is loop incidence
matrix, and vectors i and v  are defined

1 2 1 2[ , , , ]  [ , , ]T T
n ni i i i v v v v= =     (2)

Let J be the set of all vectors i and V  be the set of all
vectors  v  such that  i  and  v satisfy (1). Both the
vectors of currents and voltages are elements of a  b-
dimensional  vector space with  the inner product. Then
the Tellegen’s principle follows from:
Theorem 1.  ( Classical Tellegen’s theorem  - CTT )
If  i ∈ J and  v∈V  then it holds

: ( ), ( ) 0t i t v t∀ =        (3)
That is to say J and V are orthogonal subspaces of the
Euclidean space Eb. Furthermore J and V together span
Eb. Unfortunately, since digital filter networks are not
subject to Kirchhoff’s laws, Tellegen’s theorem in its
original form does not apply in digital signal
processing. It has motivated further research work with
the goal to modify it for discrete-time systems [5], [14].
Theorem 2.  ( Tellegen’s theorem in difference form )
Consider two signal-flow graphs with the same
topology. Let N denote the number of network nodes.



The network node variables, branch outputs and source
node values in the first network are denoted by wk, vjk,
and xj, respectively and in the second network by

kjk vw ',' and jx' . Then [2]
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It is obvious fact, following directly from the
definition of inner product, that relation (10) is just a
form of constant energy statement for a class of
representations in which elements of a set of voltages
and currents have been chosen as state variables, as
well as components of a gradient vector of a  scalar
field in  the state space. It is of crucial importance to
realize that voltages v1, v2,…, vb and currents i1, i2,…, ib
are picked arbitrarily subject only the Kirchhoff current
and voltage law constraints. The arbitrariness motivates
introducing a group of state- and feedback-
transformations on which the proposed generalization
of classical Tellegen’s principle has been issued in [12].
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Let’s now consider a class of discrete-time finite
dimensional internal system representations
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+ = +
= =

             (6)

induced by an external digital filter description.
Similarly as in the case of continuous-time systems, a
new discrete-time generalization of Tellegen’s
principle  has been formulated. If any input u(k) and any
state value x(k) will be chosen then the next state value
x(k+1) is given, and the state difference vector )(kx∆ can
be defined as

{ }( ) ( 1) ( ) , 0,1,2,..kx k x k x k x k∆ = + − ≡∆ ∈                 (7)
together with a row vector η(k) defined by:

{ }1η(k) [ ( 1) ( )] η , 0,1,2,
2

T
kx k x k k= + + ≡ ∈         (8)

Interpretation of the vector ηk as a natural discrete-
time energy function gradient vector is obvious, and the
discrete-time generalization of Tellegen’s principle is
then given by the inner product:
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For deeper understanding the geometric
interpretation of both the continuous and discrete-time
versions of the generalized Tellegen’s principle is
visualized at the Fig.1.

Fig.1. Geometric interpretation of   a) discrete-time
b) continuous-time generalized Tellegen’s principle

(for n=2)

3  Lattice-ladder structure of continuous-
time asymptotic filters
In fact, it follows from the previous analysis that it is
not the physical energy by itself, but only a measure of
distance from the system equilibrium to the actual state
x(t), what is needed. Thus, instead of the physical
energy a metric ρ[x(t), x* ] will be defined in a proper
way, and for an abstract energy E(x) we then put
formally:

2 * * 21 1E(x) x(t), x || ( ) ||
2 2

x t xρ   = −     (10)

    We start with a natural assumption that every real
signal must be generated by a realizable system. Let
such a system, called signal generating system (SGS),
be given in the form:

0
0{ }: ( ) ( ) ( ),  ( ) ,

( ) ( ),
S x t A x t B u t x t x

y t C x t
ℜ = ⋅ + ⋅ =

= ⋅
              (11)

where the matrices A, B, C are assumed to be known,
the input and output signals are supposed to be
measured on some given observation time interval,
(perhaps with some uncertainty ), and the  initial  state
is assumed to be completely unknown. Notice that the
state space representation { }Sℜ under consideration has
the strict causality property. The resulting state
equivalent asymptotic filter representation is then
specified by the triplex ( CBA ~,~,~

) as follows:
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Fig. 2. Lattice structure of continuous-time asymptotic
filter in the dissipation normal form

It is easy to show that the set of real basic design
parameters αi, γ, βi must satisfy the following
fundamental consistency conditions:
1. { }, 1, 2,..., : 0 ii i n α∀ ∈ < < ∞ ⇔
structural  asymptotic stability of the asymptotic filter
2. { }, 2,3,..., : 0 , 0, : 0i ii i n iα γ β∀ ∈ ≠ ≠ ∃ ≠ ⇔
structural minimality of the asymptotic filter
The block diagram of continuous asymptotic filter is
shown in Fig. 2, [11].

4 Lattice-ladder structure of discrete-
time asymptotic filters
In discrete-time case we proceed conceptually by
exactly the same way as before. The signal generating
system ( SGS ) is now represented by:

0
0

{ }: ( 1) ( ) ( ),
           ( ) ,    ( ) ( ),

S x k A x k B u k
x k x y k C x k

ℜ + = ⋅ + ⋅

= = ⋅
           (13)

The resulting state equivalent asymptotic filter is
specified by the triplex ( CBA ~,~,~

) as follows:
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It is easy to show that the set of real basic (direct)
design parameters δi  and the set of real complementary
(feed-back) parameters Δi must satisfy the following
consistency conditions:

2 20 1, 1,  {1,2,..., },  ,i i i ni nδ δ δ γ< ≤ +∆ = ∈ =        (15)
having important consequences:

1. , {1,2,..., }: 1ii i n∀ ∈ ∆ < ⇔  structural
asymptotic stability of  IIR asymptotic filter
2. : 0 1, 0, 0i ni δ γ β∀ < ≤ ≠ ≠ ⇔  structural
minimality ( observability & controllability )
of the asymptotic IIR  for 10 << iδ  ( 0≠∆ i ), and
of the standard  FIR  filters for 1iδ =    ( 0=∆ i )     

The derived lattice structure of the discrete-time
asymptotic filter in dissipation normal form
corresponding to the Eqns. (14) is shown at the Fig. 3. It
can be seen that it is exactly the same as the well known
dual lattice realization [8] of standard IIR digital filters.
An important special case arises if we set δi = 1 then all
the complementary parameters Δi vanish and the
structure of asymptotic filter reduces to the standard
dual transversal FIR filter structure [14].

Fig. 3. Lattice structure of the 4th order discrete-time
asymptotic filter in dissipation normal form

5   Experimental results
The physical interpretation of the internal interaction
matrix A and the observation matrix C can be useful, as
the decompositions visualized at the Fig. 4. shows.
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Fig. 4.  Physical interpretation of the system
interactions.

 On the chain structure different classes of physically
realizable filters, called asymptotic filters are based. The
recursively given normalized optimal analog filter
transfer function has form:

0 1 0

2
1 0 2

where
1( ) ,    ( ) 1,  ( ) ,  
( )

( ) ( ) ( ),   {2,..., }   
n

k k k

F s P s P s s
P s

P s sP s P s for k n

ω

ω− −

= = = +

= + ∈
(16)

Note that the positive design parameter ω0 has the
meaning of time scale transformation and can be used to
adjust the required bandwidth of the filter. The integer n
has been defined as the order of filter. When this filter is
build as passive LC analog filter, in the low-pass
prototype, all inductors have the same value, and all
capacitors have the same value, see Fig. 5. This



minimum number of circuits elements provides design
simplicity and reduces cost. Fig. 5 shows the physical
structure of a eight-pole low-pass filter prototype.

    Fig. 5. Example of equal-element 8 pole low-pass
asymptotic filter

Fig. 6. Frequency response of IIR filter realized
 by bilinear transformation method.

5.1  Wavelet construction principles
In practical applications of the wavelet transform we
only use the expansion coefficients of the signals and
thus made the discrete wavelet transform (DWT). The
scaling function and the wavelets themselves are not
needed. There is also the fact that in most cases we don't
start from given scaling functions and wavelets and
determine the filter coefficients h0(n) and h1(n) from
there. More often we start with suitable set of
coefficients h0(n) and h1(n) and use them to calculate the
DWT. The coefficient sets or filter impulse responses
h0(n) and h1(n) must fulfill the following conditions to
be the expansion coefficients of scaling functions and
wavelets [7], [8], [9], [10]:
♦ The filters h0(n) and h1(n) must set up a filter bank

with perfect reconstruction and unambiguous
projection.

♦ The scaling coefficients h0(n) must fulfil the scaling
condition:

0
0

( ) 2
N

n

h n
=

=∑      (17)

♦ The transfer function H0(z) must be regular.
In practical wavelets construction the low-pass impulse
response is cut off at sufficient value of N, in order to be
able to derive an inverted-time high-pass filter impulse
response h1(n):

h1(n) = (-1)(N - 1 - n) h0(N - 1 - n)                   (18)

From low-pass and high-pass impulse response the
scaling and wavelets coefficients can be computed.

Fig. 7. Scaling function (Left). The 7-th order low-pass
asymptotic filter impulse response, cut off at N=60.

Fig. 8. Wavelet function. The high-pass impulse
response derived from low-pass impulse response,

using Eqn. (18).

5.2   Asymptotic filters discretization
In this part example of discretization technique (bilinear
transformation) is presented [11]. The following
example of 4-th order continuous-time asymptotic low-
pass filter given by the Eqn. (16) for n= 4 and ω0=1 has
been considered. The prototype continuous filter
transfer function is given by (19):
  F(s) = 1/( 1 + 2s + 3s2 + s3 + s4)      (19)
The bilinear transformation from the s-plane to z-plane
is known to be given by:

s = (2/TS).(1 - z -1)/(1 + z -1)                  (20)
and we get:

-1 -2 2

0 -1 -2 -1 -2

0.012(1  2 )( )  
 (1-1.36 0.548 )(1- 0.86 0.886 )

z zH z
z z z z

+ +=
+ +

 (21)

The frequency response of IIR filter realized by bilinear
transformation method is shown in Fig. 6.



Fig. 9. The impulse response of the wavelet  band-pass
filter derived from low-pass and high-pass impulse

response of  7-th order asymptotic filter.

Fig. 10. Frequency spectrum of the resulting band-pass
wavelet

5.3   Example of wavelet construction
Example of wavelet construction, based on 7-th order
asymptotic filter is described [11]. The low-pass
impulse response h0(n), computed from (21), (Fig. 7),
was cut off at N = 60, in order to able to derive an
inverted time high-pass filter by Eqn. (18). The high-
pass impulse response h1(n) is shown in Fig. 8. Impulse
response, computed from low-pass and high-pass
impulse responses is shown in Fig. 9, corresponding
spectrum of the finite impulse response band-pass filter
is shown in Fig. 10.

5.4   Two channel filter bank design
A 2-channel filter bank decomposes a signal into two
frequency bands enabling to process each signal
separately. This decomposition is useful in the areas of
image processing, speech coding and also in adaptive
filtering. The block diagram of 2-channel filter bank,
also called as a quadrature mirror filter bank (QMF) is
shown in Fig. 11. The input signal x(n) is decomposed
in two frequency bands by means of analysis bank

H0(ejω) (low-pass filter, order N-1) and H1(ejω)
(complementary high-pass, overlapping filter). The
output signals from decomposition filters are decimated.
In the synthesis part, the signals are interpolated, filtered
by the synthesis filters G0(ejω) and G1(ejω), and
recombined to gain a reconstructed signal. The
overlapping feature of the analysis filters enable to use
low-order filters at the expense of introducing aliasing.
It was shown in [9] that aliasing can be cancelled by
proper design of the synthesis filters. The analog filter
bank frequency response is shown in Fig. 12, digital
filter bank impulse responses in Fig. 13 and digital filter
bank frequency responses in Fig. 14, [13].

Figure 11. Two-Channel filter bank block diagram.

Fig. 12. Analog filter bank frequency response

Fig. 13. Digital 2-channel filter bank impulse responses
of H0(ejω), H1(ejω), G0(ejω) and G1(ejω)



Fig. 14. Digital filter bank frequency response,
low-pass and high-pass filters.

6 Conclusion
In the contribution a technique of continuous asymptotic
filters and filter bank construction using a special class
of IIR filters called asymptotic filters has been
proposed. Only continuous-time asymptotic filters with
minimal number of natural design parameters, (two-
dimensional parameter space for any finite filter order
n), resulting from the filtering error signal energy
minimization have been considered [4], [5], [13].
Simulation experiments confirm the expectation that
even for low number of filter parameters the excellent
convergence properties of asymptotic filters will give
good approximations with the impulse response cut
down to the finite length (of reasonable value). The
filter banks are described more detailed in [15].
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