Applying Modeling&Simulation to the Software Testing Process – One Test Oracle solution

Ljubomir Lazić, SIEMENS d.o.o, Radoja Dakića 7, 11070 Beograd, Serbia&Montenegro, http://www.siemens.co.yu

Nikos Mastorakis, Military Institutions of University Education, Hellenic Naval Academy, Terma Hatzikyriakou, 18539, Piraeus, Greece
Abstract:- This paper suggests that the software engineering community could exploit simulation to much greater advantage. There are several reasons for this. First, the Office of the Secretary of Defense has indicated that simulation will play a significant role in the acquisition of defense-related systems to cut costs, improve reliability and bring systems into operation more rapidly. Second, there many areas where simulation can be applied to support software development and acquisition. Such areas include requirements specification, process improvement, architecture trade-off analysis and software testing practices. Third, commercial simulation technology, capable of supporting software development needs is now mature, is easy to use, is of low cost and is readily available. Computer-based simulation at various abstraction levels of the system/software under test can serve as a efficient test oracle, as described in this paper, too. Simulation-based (stochastic) experiments, combined with optimized design-of-experiment plans, in our case study, have shown a minimum productivity increase of 100 times in comparison to current practice without M&S deployment.

Key-Words:- software testing, simulation, simulation-based test oracle, validation and verification, test evaluation.

1 Introduction

Solutions in software engineering are more complex-interconnect in more and more intricate technologies across multiple operation environments. With the increasing business demand for more software coupled with the advent of newer, more productive languages and tools, more code is being produced in very short periods of time.

In software development organizations, increased complexity of product, shortened development cycles, and higher customer expectations of quality proves that software testing has become extremely important software engineering activity. Software development activities, in every phase, are error prone so defects play a crucial role in software development.

Software vendors typically spend 30 to 70 percent of their total development budget i.e. of an organization’s software development resources on testing. Software engineers generally agree that the cost to correct a defect increase, as the time elapsed between error injection and detection increases several times depending on defect severity and software testing process maturity level [1,2].

The most software organizations apply sequential software development process, through: Requirement Engineering (RE), High-Level Design (HLD), Low-Level Design (LLD), Coding phase (CO), Unit Testing (UT), Integration Testing (IT), System Testing (ST) and Field Testing phase (FT). The test process comprises a number of distinct documented activities [3,4] which may be considered the development life cycle of test cases such as:

 a) Identify and Plan;
 b) Design;
c) Build;

 d) Execute;
 e) Compare and Analyze.

Until coding phase of software development, testing activities are mainly a) and b) i.e. test planning and test case design. Computer based Modeling and Simulation (M&S) is valuable technique in Test Process planning in testing complex hardware/software systems to evaluate the interactions of large, complex systems with many hardware, user, and other interfacing software components such are Spacecraft Software, Air Traffic Control Systems, in DoD Test and Evaluation (T&E) activities [5,8]. There is strong demand for software testing effectiveness and efficiency increases. Software testing effectiveness is mainly measured by percentage of defect detection and defect leakage (containment), i.e. late defect discovery. Software testing efficiency is mainly measured by dollars spent per defect found and hours spent per defect found. To reach ever more demanding goals for effectiveness and efficiency, software developers and testers should apply new techniques such as computer-based modeling and simulation - M&S [5-9]. The results of computer-based simulation experiments with a particular embedded software system, an automated target tracking radar system (ATTRS), are presented in our paper [9]. The aim is to raise awareness about the usefulness and importance of computer-based simulation in support of software testing. The office of the US Secretary of Defense has developed a framework [10], called the Simulation, Test and Evaluation Process (DoD STEP) to integrate M&S into the test and evaluation process of the system/software under test (SUT). Deficient requirements from system level down to the lowest configuration component of the system are the single biggest cause of software project failure. From studying several hundred organizations, Capers Jones discovered that requirements engineering (RE) is deficient in more than 75 percent of all enterprises [11,12]. In other words, getting the requirements right might be the single most important and difficult part of a software project. Despite its importance, surprisingly little is known about the actual process of specifying software. The application of computer-based M&S in RE activities appears to be a promising technique from the case study presented in our paper [9], too.

At the beginning of the software testing task the following question arises: how should the results of test execution is inspected in order to reveal failures? Testing by nature is measurement, i.e. test results must be analyzed and compared with desired behavior. This is the oracle problem. All software testing methods depend on the availability of an oracle at each stage of testing. Some method for checking whether the object under test has behaved correctly on a particular execution is necessary. An ideal oracle would provide an unerring pass/fail judgment for any possible program execution, judged against a natural specification of intended behavior. Oracles are difficult to design - there is no universal recipe [24,25]. A test oracle can be devised from the requirements specification, the design documentation, a former version of the same program, another similar program, or a human being. Supported by the experience reported here, there is one further method of developing a test oracle, namely use of computer-based simulation [25]. Computer-based simulation can serve as a most effective test oracle at various levels of abstraction for the software/system under test from our experience [9,20].

The research literature on test oracles is a relatively small part of the research literature on software testing. Some older proposals base their analysis either on the availability of pre-computed input/output pairs [25,26] or on a previous version of the same program, which is presumed to be correct [28]. The latter hypothesis sometimes applies to regression testing, but is not sufficient in the general case. The former hypothesis is usually too simplistic: being able to derive a significant set of input/output pairs would imply the capability of analyzing the system outcome. Computer Based simulation on various level of system under test (SUT) abstraction can serve as Test Oracle. Weyuker has set forth some of the basic problems and argued that truly general test oracles are often unobtainable [24]. As a conclusion, test oracle can be devised from requirement specification, from design documentation, former version of the same program or similar another program or a human being and from our experience computer based simulation.

This paper is contribution to simulation-based software testing, application of computer-based simulation to Test Oracle problem solution, hardware/software co design and field testing of embedded-software critical systems such as Automated Target Tracking Radar System, showing a minimum productivity increase of 100 times in comparison to current practice in Field Testing. Applying computer-based simulation experiments we designed efficient and effective test oracle, maximally reduced aircraft flying in open air and made efficient plan for Field-testing of the SUT [9,13-23].

The paper begins with an outline of computer-based simulation basics and use of M&S to software testing process in section 2. In section 3 one Test Oracle solution using M&S is described. In section 4, conclusions and lessons learned are given.

2 Modeling & Simulation for Software Testing
The IOSTP framework is a multi disciplinary engineering integrated solution to the testing process such as modeling and simulation (M&S), design of experiments (DOE), software measurement, and the Six Sigma approach to software test process quality assurance and control as depicted in Figure 1 [18]. Its many features can be utilized within the DoD STEP approach as well. Unlike conventional approaches to software testing (e.g. structural and functional testing) which are applied to the software under test without an explicit optimization goal, the DoD STEP approach designs an optimal testing strategy to achieve an explicit optimization goal, given a priori. This leads to an adaptive software testing strategy. A non-adaptive software testing strategy specifies what test suite or what next test case should be generated, e.g. random testing methods, whereas an adaptive software testing strategy specifies what testing policy should be employed next and thus, in turn, what test suite or test case should be generated next in accordance with the new testing policy to maximize test activity efficacy and efficiency subject to time-schedule and budget constraints. The process is based on a foundation of operations research, experimental design, mathematical optimization, statistical analyses, as well as validation, verification, and accreditation techniques.
The focus in this paper is the application of M&S and DOE to minimize the test suite size dramatically through black box scenario testing of the ATTRS real-time embedded software application, and using M&S as a test oracle in this case study. For the purpose of this paper computer-based simulation is “the process of designing a computerized model of a system (or process) and conducting experiments with this model
[image: image1.jpg]

Fig. 1 Integrated and optimized software testing process (IOSTP) [18]

for the purpose either of understanding the behavior of the system or of evaluating various strategies for the operation of this system [6].” Simply put, a simulation allows you to develop a logical abstraction (an object), and then examine how an object behaves under differing stimulus. Simulation can provide insights into the designs of, for example, processes, architectures, or product lines before significant time and cost has been invested, and can be of great benefit in support of testing process and training. There are several distinct purposes for Computer Based Simulation. One is to allow you to create a physical object or system such as Automated Target Tracking Radar System, as a logical entity in code. It is practical (and faster) to develop a code simulation for testing physical system design changes. Changes to the physical system can then be implemented, tested, and evaluated in the simulation. This is easier, cheaper, and faster than creating many different physical engines, each with only slightly different attributes.

The following objectives in system simulation have great value in system design and test activities:

· to understand the relationships within a complex system;

· to experiment with the model to assess the impact of actions, options, and environmental factors;

· to test the impact of various assumptions, scenarios, and environmental factors;

· to predict the consequences of actions on a process;

· and to examine the sensitivity of a process to internal and external factors.

Since the early 1990s, graphical simulation tools have become available. These tools:
· allow rapid model development through, using, for example,

· drag and drop of iconic building blocks

· graphical element linking

· syntactic constraints on how elements are linked

· are less error prone

· require significantly less training

· are easier to understand, reason about and communicate to non-technical staff.

Because of these features, network-based simulation tools allow one to develop large detailed models quite rapidly. The focus thus becomes less on the construction of syntactically correct models and more on the models' semantic validity and the accuracy of their numerical drivers. The simulation tools in today's market place, such as SLAM II, SIMSCRIPT, SIMAN, GPSS, PowerSim, MATLAB etc, are robust and reasonably inexpensive. Unfortunately, before a simulation can be of benefit, a model of the system must be developed that allows the simulation developer to construct the computer-based simulation. Modeling is the first step—the very foundation of a good simulation as depicted on Fig. 2.

[image: image2.wmf]Abstraction

Real-World

System

Simulation Output

Computer

Simulation

Model of

Real-World

System

Predictions of

Real-World Events

Verification & Validation

against Real-World

Testing and Verfying

Code

Validation of Model

Verification & Validation

of Code

Abstraction

Fig.2 Simplified simulation process

2.1 Model-Based Testing through Simulation

You must have a model prior to creating a simulation. Modeling is an attempt to precisely characterize the essential components and interactions of a system. It is a “representation of an object, system, or idea in some form other than that of the entity itself [6].” In a perfect world, the object of a simulation (whether it be a physical object such as a jet engine or a complex system such as an airport) would have precise rules for the attributes, operations, and interactions. These rules could be stated in natural language, or (more preferably) in mathematical rules. In any case, a successful model is based on a concept known as abstraction, a technique widely used in object-oriented development. “The art of modeling is enhanced by an ability to abstract the essential features of a problem, to select and modify basic assumptions that characterize the system, and then to enrich and elaborate the model until a useful approximation results.” A system model is described in mathematical and logical relationships with sufficient breadth and detail to address the purpose of the model within the constraints imposed on the model-maker (Fig. 3). If the model is valid, it provides an opportunity to study system phenomena in a controlled manner, which may be very difficult otherwise due to an inability to control the variables in a real system.

However, we do not have a perfect world. Parts of the simulation might not have well known interactions. In this case, part of simulation’s goal is to determine the real-world interactions. To make sure that only accurate interactions are captured, the best method is to start with a simple model, and ensure that it is correct and representative of the real world. Next, increase the interactions and complexity iteratively, validating the model after each increment. Continue adding interactions until an adequate model is created that meet your needs. Unfortunately the previous description implies that you have clearly identified needs. This requires valid requirements.

It also requires planning for validation of the model. As in creating any software product, requirements and needs must be collected, verified, and validated. These steps are just as important in a simulation as they are in any system. A system that is invalidated has not been field-tested against the real world and could produce invalid results. Abstraction and validation are equally necessary to create a reliable model that correctly reflects the real world, and also contains all attributes necessary to make the model a useful tool for prediction. The steps of abstraction and validation are in themselves, however, not totally sufficient to create a valid and usable model. Other steps are necessary to create a model that is of sufficient detail to be useful. These steps that describe the process of producing and using a dynamic simulation are [29]: Problem formulation: define the problem and the objective in solving it. As insight to the problem is gained, its formulation may be refined.

1. Model building: abstract the problem into mathematical and logical relationships that comply with the problem formulation. To do so, the modeler must understand the system structure and operations well enough to extract the essential elements and interactions of a system without including unnecessary detail. Only elements, which cause significant differences in decision-making, should be included.

2. Data acquisition: identify, specify, and collect model input data. Collection of some data for inputs may be costly, so the sensitivity of the model results to changes in these inputs should be evaluated so as to determine how best to allocate time and money spent on refining input data.

3. Model translation: program the model in a computer language.

4. Program verification: establish that the computer program executes as intended. This is typically done by manually checking calculations.

5. Model validation: establish that the model corresponds to the real system within a desired range of accuracy. Data inputs, model elements, subsystems, and interfaces should all be validated. Simulation models are often validated by using them to reproduce the results of a known system

6. Experimental design: design experiments to efficiently test the relationships under study and to produce the maximum confidence in the output data.

7. Experimentation: execute the experimental design.

8. Analysis of results: employ statistical methods to draw inferences from the data.

9. Implementation and documentation: implement the decisions and document the model and its use.

Fig. 3 shows how these steps are related. For a more detailed explanation, the reader may consult [6].

2.2 Verification and Validation

One of the most important problems facing a real-world simulator is that of trying to determine whether a simulation model is an accurate representation of the actual system being studied. In Modeling and Simulation (M&S)-Based Systems Acquisition, computer simulation is used throughout the development and deployment process not just as an analysis tool but also as a development, integration, test, verification and sustainment resource. Because of this Verification and Validation (V&V) task in simulation development process is most important task. Definition of V&V is:

VERIFICATION: The process of determining that a model implementation accurately represents the

Developer’s conceptual description and specifications.
VALIDATION: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model.

If the model is to be credible and a predictor of future behavior, it is critical that you validate it [27,30]. Since no single test can ever demonstrate the sufficiency of a simulation to reflect real-world behavior, it is convenient to take phased approach in simulation V&V process through:

[image: image3.emf]Problem definition

Strategic/Tactical

Planning

Planning

Modeling

Verification/

Validation

Application

Data Acquisition

Model Scoping Requirements

Specifications

Design

Implementation

(Code)

Model Building

Model

Translation

Verification

Validation

Experiments

Analysis

Implementation/

Documentation

Fig. 3 More detailed computer-based simulation process

1. Requirement Validation

2. Conceptual Model Validation

3. Design Verification

4. Implementation Verification

5. Results Validation or Operational Validation

as shown in Fig. 4.

[image: image4.wmf]Real World

Problem Entity

Conceptual

Model

Computer

Model

Conceptual

Model

Validity

 Operational

 Validity

Software

Verification

Computer

Programming &

Implementation

Experimentation

 Analysis &

 Modeling

DATA

VALIDITY

- Historical

Use

- Comparison of

Results

- Sensitivity

Analysis

- Baseline

Performance

-Documentation

Adequacy

- Configuration Ccontrol

- Detailed Code Analysis

Internal

Security

Vrerification

- Coding practices

-Software Testing

-Detailed Code Analysis

- Design and Coding

Standards

- Configuration Control

-Documentation

Adequacy

- Audit Trial of

Model

Development

-Assumptions

- Algorithms

- Concepts

-Source

- History

- Acceptance

 Fig. 4 V&V process structure

Requirement Validation. A proper requirements document defines simulation requirements in sufficient detail to enable accurate implementation and verification of the simulation design. The less the developer understands the system or phenomenon being simulated, and the level of fidelity at which it must be simulated, the more a good requirements document becomes essential. Various CASE tools and some software development environment facilitate tracing requirements to design and implementation. Such tracing ensures that all requirements are reflected in the simulation design and implementation but does not ensure that the requirements are appropriate, consistent, testable or comprehensive, and in sufficient detail for simulator developer to translate them into simulation design and code that require at list the requirements Inspection and Audit.

Conceptual model Validation. Conceptual model validity is determining that (1) the theories and assumptions underlying the conceptual model are correct, and (2) the model representation of the problem entity and the model’s structure, logic, and mathematical and causal relationships are “reasonable” for the intended purpose of the model. The theories and assumptions underlying the model should be tested using mathematical analysis and statistical methods on problem entity data. Examples of theories and assumptions are linearity, independence, stationary, and Poisson arrivals. Examples of applicable statistical methods are fitting distributions to data, estimating parameter values from the data, and plotting the data to determine if they are stationary. In addition, all theories used should be reviewed to ensure they were applied correctly. A Model Walkthrough that involves a small group of qualified individuals or experts, who carefully review and revisit the model’s logic and documentation, can do it. This group may also contrast existing logic with alternative methods as well as review the basic structure of the model.

Simulation Design and Implementation Verification . Computerized model verification ensures that the computer programming and implementation of the conceptual model are correct. The major factor affecting verification is whether a simulation language or a higher level programming language such as FORTRAN, C, or C++ is used. The use of a special-purpose simulation language generally will result in having fewer errors than if a general-purpose simulation language is used, and using a general-purpose simulation language will generally result in having fewer errors than if a general purpose higher level language is used. (The use of a simulation language also usually reduces the programming time required and the flexibility.) When a simulation language is used, verification is primarily concerned with ensuring that an error free simulation language has been used, that the simulation language has been properly implemented on the computer, that a tested (for correctness) pseudo random number generator has been properly implemented, and that the model has been programmed correctly in the simulation language. The primary techniques used to determine that the model has been programmed correctly are structured walk-through and traces. If a higher-level language has been used, then the computer program should have been designed, developed, and implemented using techniques found in software engineering. (These include such techniques as object-oriented design, structured programming, and program modularity.) In this case verification is primarily concerned with determining that the simulation functions (such as the time-flow mechanism, pseudo random number generator, and random variety generators) and the computer model have been programmed and implemented correctly. There are two basic approaches for testing simulation software as in any other computer software testing methodology [2-4, 16]: static testing and dynamic testing. In static testing the computer program is analyzed to determine if it is correct by using such techniques as structured walk-through, correctness proofs, and examining the structure properties of the program. In dynamic testing the computer simulation program is executed under different conditions and the values obtained (including those generated during the execution) are used to determine if the computer program and its implementations are correct. The techniques commonly used in dynamic testing are various black-box, white-box or gray-box techniques [30].
Result Validation or Operational Validation. Operational validity (Result Validity) is concerned with determining that the model’s output behavior has the accuracy required for the model’s intended purpose over the domain of its intended applicability. This is where most of the validation testing and evaluation takes place. The computerized model is used in operational validity, and thus any deficiencies found may be due to an inadequate conceptual model, an improperly programmed or implemented conceptual model (e.g., due to programming errors or insufficient numerical accuracy), or due to invalid data.

There are various validation techniques (and tests) used in operational validation. Most of the techniques described here are found in the literature [27,30], although some may be described slightly differently. A combination of techniques is generally used. These techniques are used for validating and verifying the sub models and overall model.

Animation: The model’s operational behavior is displayed graphically as the model moves through time. For example, the movements of aircrafts with trajectories and their positions, velocity vector measured by Automated Target Tracking Radar System during a simulation are shown graphically.

Comparison to Other Models: Various results (e.g., outputs) of the simulation model being validated are compared to results of other (valid) models. For example, (1) simple cases of a simulation model may be compared to known results of analytic models, and (2) the simulation model may be compared to other simulation models that have been validated.

Degenerate Tests: The degeneracy of the model’s behavior is tested by appropriate selection of values of the input and internal parameters. For example, Automated aircraft Tracking with aircraft speed equal to zero.

Event Validity: The “events” of occurrences of the simulation model are compared to those of the real system to determine if they are similar.

Extreme Condition Tests: The model structure and output should be plausible for any extreme and unlikely combination of levels of factors in the system; e.g., if in process inventories are zero, production output should be zero.

Face Validity: “Face validity” is asking people knowledgeable about the system whether the model and/or its behavior are reasonable. This technique can be used in determining if the logic in the conceptual model is correct and if a model’s input-output relationships are reasonable.

Fixed Values: Fixed values (e.g., constants) are used for various model input and internal variables and parameters. This should allow the checking of model results against (easily) calculated values.

Historical Data Validation: If historical data exist (or if data are collected on a system for building or testing the model), part of the data is used to build the model and the remaining data are used to determine (test) whether the model behaves as the system does. (This testing is conducted by driving the simulation model with either sample from distributions or traces.

Historical Methods: The three historical methods of validation are rationalism, empiricism, and positive economics. Rationalism assumes that everyone knows whether the underlying assumptions of a model are true. Logic deductions are used from these assumptions to develop the correct (valid) model. Empiricism requires every assumption and outcome to be empirically validated. Positive economics requires only that the model be able to predict the future and is not concerned with a model’s assumptions or structure (causal relationships or mechanism).

Internal Validity: Several replications (runs) of a stochastic model are made to determine the amount of (internal) stochastic variability in the model. A high amount of variability (lack of consistency) may cause the model’s results to be questionable and, if typical of the problem entity, may question the appropriateness of the policy or system being investigated.

Multistage Validation: This validation method consists of (1) developing the model’s assumptions on theory, observations, general knowledge, and function, (2) validating the model’s assumptions where possible by empirically testing them, and (3) comparing (testing) the input-output relationships of the model to the real system.

Operational Graphics: Values of various performance measures, e.g., number in queue and percentage of servers busy, are shown graphically as the model moves through time; i.e., the dynamic behaviors of performance indicators are visually displayed as the simulation model moves through time.

Parameter Variability–Sensitivity Analysis: This technique consists of changing the values of the input and internal parameters of a model to determine the effect upon the model’s behavior and its output. The same relationships should occur in the model as in the real system. Those parameters that are sensitive, i.e., cause significant changes in the model’s behavior or output, should be made sufficiently accurate prior to using the model. (This may require iterations in model development.)

Predictive Validation: The model is used to predict (forecast) the system behavior, and then comparisons are made between the system’s behavior and the model’s forecast to determine if they are the same. The system data may come from an operational system or from experiments performed on the system. e.g., field tests.

Traces: The behaviors of different types of specific entities in the model are traced (followed) through the model to determine if the model’s logic is correct and if the necessary accuracy is obtained.

3 Using Simulation as Test Oracle

There are many areas where simulation can be applied to support software development and acquisition. Such areas include requirements specification, process improvement, architecture trade-off analysis, and software testing. Of particular interest here is the use of simulation as a test oracle as depicted in Fig. 5. The term oracle may be used to mean several things in testing—the process of generating expected results, the expected results themselves, or the answer to whether or not the actual results are as expected. The testing process is typically systematic in test data selection and test execution. For the most part, however, the effective use of test oracles has been neglected, even though they are a critical component of an effective method for designing in software quality for testability that should include the concurrent development of test oracles in the testing process [9,25,28]. Oracle development can represent a significant effort, which may increase design and implementation costs; however; overall testing and maintenance costs should be reduced. Oracle development must therefore be carefully integrated into the software development/testing life cycle. Oracles must be designed, verified and validated for unit testing, through subsystems testing (integration testing) up to system testing in a systematic, disciplined and controlled manner. Test oracles prescribe acceptable behavior for test execution. In the absence of judging test results with oracles, i.e. use of a reference system, testing does not achieve its goal of revealing failures or assuring correct behavior in a practical manner – manual result checking is neither reliable nor cost-effective. In much of the research literature on software

[image: image5.wmf]Test Oracle

Software/System

Under Test

Test Results

Test Results

Postcondition

Data

Postcondition

Data

Postcondition

Program State

Postcondition

Program State

Environmental

Results

Environmental

Results

Test Inputs

Precondition

Data

Precondition

Program State

Environmental

Inputs

Fig. 5. Testing model with Oracle
test case generation or test set adequacy, the availability of oracles is either explicitly or tacitly assumed, but applicable oracles are not described. In current industrial software testing practice, the oracle is often a human being. The most significant oracle characteristics are:

Relying on a human to assess program behavior has two evident drawbacks: accuracy and cost. While the human “eyeball oracle” has an advantage over more technical means in interpreting incomplete, natural-language specifications, humans are prone to error when assessing complex behavior or detailed, precise specifications, and the accuracy of the eyeball oracle drops precipitously with increases in the number of test runs to be evaluated. Automated test oracles are required for running large numbers of tests. An ideal test oracle would satisfy desirable properties of program specifications, such as being complete but avoiding over-specification, while also being efficiently checkable. These properties are in conflict, and many of the interesting issues and trade-offs in the design of test oracle systems come in various ways as those tensions between desirable properties of specifications and necessary properties of implementations are resolved.

When simulation is used as an oracle, it tends to take on more of the capabilities of a “real” specification language, or provides more powerful facilities for deriving run-time checks from external specifications. Approaches to bridging the gap usually involve some combination of restricting the language to what can be effectively or efficiently checked (e.g. disallowing quantification over infinite sets), mapping implementation entities to specification-level entities, and/or taking advantage of the peculiarities of particular application domains. The research literature on test oracles is a relatively small part of the research literature on software testing. Weyuker has set forth some of the basic problems and argued that truly general test oracles are often unobtainable [24]. Some older proposals base their analysis either on the availability of pre-computed input/output pairs [25,26] or on a previous version of the same program, which is presumed to be correct [28]. The latter hypothesis sometimes applies to regression testing, but is not sufficient in the general case. The former hypothesis is usually too simplistic: being able to derive a significant set of input/output pairs would imply the capability of analyzing the system outcome. Computer-based simulation at various levels of SUT abstraction can serve as a test oracle, which is able to derive a significant set of input/output pairs.

A simulation-centric development environment is a developer’s dream, especially in the development of embedded real-time systems. It directly provides the many advantages inherent to software over hardware, reducing costs, risk, and schedule. These advantages are now briefly enumerated.

Control and early availability: The simulator can be executed a single-step at a time; it provides breakpoints triggered by expressions of arbitrary complexity; it can checkpoint everything while recording all intermediate variables that can serve as test cases for input variables or expected output variables depending on the simulated level of system abstraction; and it can be dramatically reconfigured in a matter of moments. The simulator generally has a shorter development cycle than hardware of comparable fidelity, and so can be available earlier in the project life cycle. Developers can begin work on a full-fidelity platform, rather than constructing ad-hoc scaffolding for their individual areas of concern. Hardware/software design trade-offs can be explored before hardware is developed – no more tedious days with a logic analyzer trying to find an interrupt problem or race condition. This aspect of simulation satisfies several of the required characteristics of test oracles: predicting speed and short oracle execution time.
Visibility: The full state of the system, at any instant, is easily examined, check pointed, logged, or modified. Formal analysis for deadlock potential or race conditions is feasible. Cache patterns can be analyzed in detail. Abuse of the hardware (e.g. use of an uninitialized variable, or failure to save the entire state during an interrupt, or setting both of the “never set this bit and that bit at the same time” bits) can be detected online and in situ.
Extensibility: The behavior of the simulator is easily
extended, especially with the use of modern scripting subsystems that give the sophisticated power-user access to the full feature set of the tool. This aspect of simulation satisfies the required characteristic of test oracle evolution through changes in the SUT.
Automated control: Hands-off and repeatable testing is encouraged because it is easy and natural to control the execution of the simulator via other software. Nightly integration testing is reasonable. Testing staff and schedule can be greatly reduced.

Modularity: A simulator can be constructed in a highly modular fashion, so that more urgently needed models are built first and available to the users before the entire simulator has been built and validated.

4 Conclusion

In software development organizations, increased complexity of product, shortened development cycles, and higher customer expectations of quality proves that software testing has become extremely important software engineering activity. Software development activities, in every phase, are error prone so defects play a crucial role in software development. At the beginning of software testing task we encounter the question: How to inspect the results of executing test and reveal failures? Testing in nature is measurement i.e. step d) comparison and analysis of test life cycle, what is under test with reference. The Reference is the oracle problem. All software-testing methods depend on the availability of an oracle at each stage of testing. In this paper we demonstrated how M&S can be efficiently and effectively implemented in software testing process of ATTRS as case study. Integration of M&S in Software Testing Process will generally result in the exchange of data between different classes of simulations.

All classes of M&S considered here involve computer programs that either replicate systems (existing or in some stage of development) or support actual use or testing of systems. Some M&S involve hardware, actual equipment, or personnel. Effective test process is achieved in defense-related systems (DoD) and other applications using a combination of computer-based modeling and simulation (M&S) with measurement facility, system integration laboratory, hardware-in-the-loop, installed system and open air range testing known as STEP are presented in this paper.
This paper is contribution to simulation-based software testing, application of computer-based simulation to hardware/software co design and Field testing of embedded-software critical systems such as Automated Target Tracking Radar System, showing a minimum productivity increase of 100 times in comparison to current practice in Field Testing. Applying computer-based simulation experiments we maximally reduced aircraft flying in open air and made efficient plan for Field-testing of the system.

Lessons Learned

The system T&E experience validated the overall approach of predicting system performance by extensive analysis and simulation. Validating the simulations with data from live system tests worked. The STEP approach proved effective in four ways:

· Exhaustive and detailed simulations smoked out requirements flaws and made them easy to fix. There were no program slips due to these flaws.

· It minimized the number of tests.

· It validated the family of simulations used to model the performance of the tactical ATTRS under full-scale enemy attacks.

· It produced a set of scenarios used to test target software implementation, fund bugs, serves as test oracles in all test phases and track software development progress.

References:

[1] Boehm B. Software Risk Management. IEEE Computer Society Press, Los Alamitos California, 1989.

[2] Burstein I. at all. Developing a testing maturity model, Part II. Illinois Institute of Technology, Chicago, 1996.

[3] ANSI/IEEE Std. 829-1983, IEEE Standard for Software Test Documentation, 1983.

[4] DOD-STD-2167, Military Standard Defense System Software Development, 1988.

[5] Reinholz K. Applying Simulation to the development of Spacecraft flight software. JPL Technical Report, 1999.

[6] Cristie A. Simulation: An enabling technology in software engineering. CrossTalk the Journal of Defense Software Engineering, April 1999.

[7] http://www.acq.osp.mil. URLs cited were accurate as of April 2002.
[8] http://www.msosa.dmso.mil. URLs cited were accurate as of May 2001.

[9] Lazić, Lj., Velašević, D., Applying simulation to the embedded software testing process, SOFTWARE TESTING, VERIFICATION and RELIABILITY, Volume 14, Issue 4, 257-282, John Willey & Sons, Ltd., 2004.

 [10] http://acq.osd.mil/te/programs/final_STEP.pdf URLs cited were accurate as of April 2002.

[11] Jones C. Applied Software Measurement: Assuring Productivity and Quality, McGraw-Hill, New York, 1996.

[12] Hoffman H, Lehner F. Requirement Engineering as a Success Factor in Software Projects, IEEE Software, July/August 2001.

[13] Lazić, Lj., Automatic Target Tracking Quality Assesment using Simulation, 8th Symposium on Measurement -JUREMA, 29-31 October, Kupari-Yugoslavia, 1986.

[14] Lazić, Lj., Computer Program Testing in Radar System,. Masters thesis, University of Belgrade, Faculty of Electrical Engineering, Belgrade, Yugoslavia, 1987.

[15] Lazić, Lj., Method for Clutter Mup Alghoritm Assesment in Surveilance Radar, 11th Symposium on Measurement -JUREMA, April, Zagreb-Yugoslavia, 1989.

[16] Lazić, Lj., Software Testing Methodology, YUINFO’96, Brezovica, Serbia&Montenegro, 1996.

[17] Lazić, Lj., Velašević, D., Integrated and optimized software testing process based on modeling, simulation and design of experiment, 8th JISA Conference, Herceg Novi, Serbia&Montenegro, June 9-13, 2003

[18] Lazić, Lj., Velašević, D., Mastorakis, N., A framework of integrated and optimized software testing process, WSEAS TRANSACTIONS on COMPUTERS, Issue 1, Volume 2, 15-23, January 2003.

 [19] Lazić, Lj., Medan, M., SOFTWARE QUALITY ENGINEERING versus SOFTWARE TESTING PROCESS, TELFOR 2003(Communication Forum), 23-26 November, Beograd, 2003.

[20] Lazić, Lj., Velašević, D. i Mastorakis, N., The Oracles-Based Software Testing: problems and solutions, WSEAS MULTICONFERENCE PROGRAM, Salzburg, Austria, February 13-15, 2004, 3rd WSEAS Int.Conf. on SOFTWARE ENGINEERING, PARALLEL & DISTRIBUTED SYSTEMS (SEPADS 2004)
[21] Lazić, Lj., Velašević, D. i Mastorakis, N., Software Testing Process Management by Applying Six Sigma, WSEAS Joint Conference program, MATH 2004, IMCCAS 2004, ISA 2004 and SOSM 2004, Miami, Florida, USA, April 21-23, 2004.

[22] Lazić, Lj., Velašević, D., Software Testing Process Improvement by Applying Six Sigma, 9th JISA Conference, Herceg Novi, Serbia & Montenegro, June 9-13, 2004.

[23] Lazić, Lj., Integrated and Opitimized Software Testing Process, TELFOR 2004 (Communication Forum), 23-26 November, Beograd, 2004.
[24] Weyuker EJ. On testing non-testable programs. Computer Journal, 1982; 25(4): 465-470.

[25] Binder RV. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley, 2000.

[26] Chapman D. A Program Testing Assistant, Communications of the ACM, September 1982.

[27] Sargent, R. G. Validation and Verification of simulation models, Proc. of 2000 Winter Simulation Conf.; 50–59.

[28] Richardson DJ. TAOS: Testing with Analysis and Oracle Support, In Proceedings of the 1994 International Symposium on Software Testing and Analysis (ISSTA), Seattle, August 1994;138-153.

[29] Pritsker, A. Alan B. Introduction to Simulation and SLAM II, 3rd ed. New York: John Wiley & Sons, 1986

[30] Caughlin D. An Integrated approach to Verification, Validation, and Accreditation of models and simulations, Proc. of 2000 Winter Simulation Conf.; 872–881.

(Predicting speed	(Oracle execution time

(Evolution of oracle through changes in the SUT

(Results usability

PAGE
1

_1104653918.vsd

_1127043230.vsd

_1127043431.vsd

_1102861293.vsd

