
A fault tolerant Neuro-Fuzzy Inference system: using
Coarse-coded Distributed Representations

SRIRAM .G. SANJEEVI, DR. PUSHPAK BHATTACHARYYA

Sriram. G. Sanjeevi, Asst.Professor,
Dept. of Comp. Science & Engg.,
National Institute of Technology

 Warangal 506004, INDIA

Dr. Pushpak Bhattacharyya, Professor,
 Dept. of Comp. Science & Engg.,

 Indian Institute of Technology, Bombay,
 Mumbai 400076, INDIA

Abstract: - In this paper, we describe a fault-tolerant Neuro-Fuzzy inference system for performing
fuzzy reasoning using coarse-coded distributed representations. The system implements the fuzzy
membership functions in a novel way using coarse-coded distributed representations for the inputs
and outputs of neural networks. Distributed representations are known to give advantages of fault
tolerance, generalization and graceful degradation of performance under noise conditions.
Performance of the Neuro-Fuzzy inference system with regard to its ability to exhibit fault tolerance
under noise conditions is studied. The system offered very good results of fault tolerance under
noise conditions. It has also exhibited good generalization ability on unseen test inputs.

Key-Words: - Coarse-coding, Fuzzy rules, Neural, Reasoning, Fault tolerance, Membership function.

1 Introduction
Traditionally reasoning systems using predicate
logic have been implemented using symbolic
methods of artificial intelligence. Connectionist
or neural network methods of implementation of
reasoning systems describe an alternative
paradigm. Among the connectionist reasoning
systems they use two types of representational
schemes. They are 1) localist and 2) distributed
representational schemes.
 Localist representational schemes represent
each concept with an individual unit or neuron.
In the distributed representational schemes [5]
each unit or neuron is used in representation of
multiple concepts and multiple units or neurons
are used to represent a single concept. In the
literature, some localist methods for predicate
logic reasoning using connectionist networks
have been described. The connectionist
inference system SHRUTI [1], [2], [3] described
a localist method where temporal synchrony
was used to create bindings between variables

and entities they represent. A variable x of the
predicate give(x, y, z) is getting bound to an
entity d if the nodes representing them fire
during the same phase of time p1 during the
predicate p activation period T. The time period
T is divided into three phases p1, p2 and p3
during which synchronous firing of variables x,
y and z and entity nodes they bound
respectively takes place. This method has used
temporal synchrony as a mechanism to create
localist representations. CONSYDERR [4,9]
described a localist method for variable binding
and forward reasoning. It used an assembly or
a set of interconnected nodes to represent each
predicate p(x1…..xk). Each assembly contains
one C node for storing the confidence value of
the predicate p and k X nodes to store the
binding values for k variables of the predicate p.
A separate node is allocated for each variable
of a predicate. Since, these systems used
localist representations, advantages of
distributed representations were not obtained

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp204-209)

by them. In our previous works [6,7,8] we
proposed and described predicate logic
reasoning systems using neural networks which
used coarse-coded distributed representations
to represent instantiated predicates. In these
publications we have described the advantages
of using the coarse-coded representations
along with neural networks for performing
predicate logic reasoning. However, the
predicate logic reasoning is nonfuzzy and crisp
reasoning and hence not suitable for fuzzy
reasoning. Here we propose to examine the
use of the coarse-coded distributed
representations along with the neural networks
in the implementation of a Fuzzy-rule-based
system. Our motivation is to make available the
advantages of distributed coarse-coded
representations to the neuro-fuzzy reasoning
systems. It is investigated here in this work to
examine the advantages gained by the Neuro-
Fuzzy reasoning system by using distributed
coarse-coded representations.

2 Fuzzy Rule Base
We propose to implement, as an example, the
following TSK (Takagi-Sugeno) fuzzy rules in
our system.
1. If x is small and y is small, then
 z = f1= -x + y/4 + 1
2. If x is small and y is large, then
 z = f2= 0.75y + 3
3. If x is large and y is small, then
 z = f3 = x + 2
4. If x is large and y is large, then
 z = f4 = x + y + 1
5. If x is medium and y is large, then
 z = f5 = x/2 + y + 2
6. If x is small and y is medium, then
 z = f6 = -x + y/2 + 1

 For given crisp input values for x and y the
inferred output z is calculated by
 Z=(µ1f1+µ2f2+µ3f3+µ4f4+µ5f5+µ6f6)/(µ1+µ2+µ3

+µ4+µ5 +µ6) ………………...(1)
where
µ1= µsmall(x)* µsmall(y);
µ2= µsmall(x)* µlarge(y);
µ3= µlarge(x)* µsmall (y);
µ4= µlarge (x)* µlarge(y);
µ5= µmedium(x)* µlarge(y);
µ6= µsmall(x)* µmedium(y)
where µsmall(x) denotes the membership
function for linguistic value small of the
linguistic variable x,

µmedium(x) denotes the membership function for
linguistic value medium of the linguistic variable
x, µlarge(x) denotes the membership function for
linguistic value large of the linguistic variable x,
µsmall(y) denotes the membership function for
linguistic value small of the linguistic variable y,
µmedium(y) denotes the membership function for
linguistic value medium of the linguistic variable
y, µlarge(y) denotes the membership function for
linguistic value large of the linguistic variable y,
and ‘*’ denotes the ‘Minimum’ operation
between the indicated fuzzy membership
functions. Our task is to start with the above
fuzzy rule base and obtain the results of fuzzy
inference correctly by our system.

Fig.1. Neural Networks N1 to N6 implement
fuzzy membership functions

 The architecture for implementing the fuzzy
membership functions with neural networks N1
to N6 which use coarse-coded representations
at their inputs and outputs is shown in the figure
1 above. Neural networks N1 to N6 implement
µsmall(x), µmedium(x), µlarge(x), µsmall (y), µmedium(y)
and µlarge(y) respectively. x and y values are
coarse-coded before giving them as inputs to
the neural networks N1 to N6. Neural networks
N1 to N6 generate on their outputs respective
membership function values in coarse-coded
form. These membership function values after
decoding will be in the interval [0, 1]. Each of
the six circles at the right side of figure 1 are
used to denote the ‘minimum’ operation
performed on its inputs on the decoded

 N1

N2

N3

N4

N5

N6

x

y

µ1

µ2

µ3

µ4

µ5

µ6

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp204-209)

membership function values. They generate on
their outputs µ1 to µ6 respectively. From these
the value of output z is computed using
formula in equation (1) for a given x, y.

3 Description of data used by
fuzzy membership functions
 We show here in the following tables 1 to 6
the samples of the data needed by the fuzzy
membership functions µsmall(x), µmedium(x),
µlarge(x), µsmall (y), µmedium(y) and µlarge(y)
respectively. We assume the data shown in
tables 1 to 6 is obtained from the expert
knowledge for the efficient performance of our
fuzzy system.

Table 1. Shows a sample of data used by
membership function µsmall(x)

S.No. X µsmall(x)
2 6.0 0.98
10 30.0 0.08

Table 2. Shows a sample of data used by
membership function µmedium(x)

S.No. x µmedium(x)
8 24.0 0.98

14 42.0 0.1

Table 3. Shows a sample of data used by
membership function µlarge(x)

S.No. x µlarge(x)
12 36.0 0.3
16 48.0 0.96

Table 4. Shows a sample of data used by
membership function µsmall (y)

S.No. y µsmall (y)
3 6.0 0.95
5 10.0 0.6

Table 5. Shows a sample of data used by
membership function µmedium(y)

S.No. y µmedium(y)
 6 12.0 0.3
 12 24.0 0.4

Table 6. Shows a sample of data used by
membership function µlarge(y)

S.No. y µlarge(y)
 11 22.0 0.45
 14 28.0 0.95

3.1 Obtaining Coarse-coded Distributed
Representations
We describe here how to obtain coarse-coded
representations of the data shown in the tables
1 to 6. If the data items to be coarse-coded lie
in the interval [R1, R2] where R1 and R2 are
real numbers then we divide the interval [a, b]
into N sub-intervals, where a = floor(R1) and b
= ceiling(R2). Suppose we need to encode the
real number R present in the kth sub-interval
we proceed as follows. If R is in lower half of
the sub-interval k we represent R with a localist
pattern having (N+1) bits, with (k)th bit 1 and
other bits ‘zero’. If R is in upper half of the sub-
interval k we represent R with a localist pattern
having N+1 bits, with (k+1)th bit 1 and other bits
zero. We illustrate the coarse-coding process
through an example. For coarse-coding output
values of membership functions we chose N =
40. Consider the 2nd row of table 1. The value
of µsmall(x) is 0.08. Since this value belongs to
lower half of 4th sub-interval we encode it with
a localist pattern of 41 bits with 4th bit 1 and all
other bits ‘zero’.
‘00000000000 0000000000 0000000000
0000001000’ ……….……..(2)
We are yet to convert this localist pattern into
the coarse-coded pattern. We add three leading
zeroes to left side of the above pattern for the
reason described below to get the following
pattern
‘00000000000000 0000000000 0000000000
0000001000’.
 We illustrate the process of converting the
above localist pattern into the coarse-coded
pattern. We view the above pattern as being
kept in overlapping coarse zones of length of 4
consecutive bits and encode the zone as 1 if
there is at least one 1 bit in that zone or else as
0. We then consider next coarse zone and
encode it as 1 or 0 following above method. We
do this process left to right starting from the left
most bit. We do this encoding process for
above localist pattern to get the following
coarse-coded pattern

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp204-209)

‘00000000000000 0000000000 0000000000
0001111000’.
 The reason we have added three leading
zeros to the localist pattern in (2) is to enable
us to coarse-code the pattern even if the 1 bit
occurred in the 41st bit (from the right side) of
the pattern.
 Coarse-coding can be applied when the
number of 1’s in the original string is sufficiently
sparse. If the number of 1’s in the original string
is not sufficiently sparse then coarse-coded
string when decoded will not yield the original
string. Coarse-coding increases the
information capacity [5] by increasing the
number of units active at a time compared to
localist codes which have sparsely populated
1’s. The amount of information conveyed by a
unit that has a probability p of being ‘1’ is

– plog (p) – (1 – p) log(1 – p).
 The coarse-coding process involves making
an approximation and hence an error. To
decrease the error to the desired limits, we
choose an appropriate value of ‘N’. ‘x’ and ‘y’
values used by our fuzzy system are real
numbers in the range 0 to 60.0, 0 to 40.0
respectively. The N values for coarse-coding
them were chosen to be 60 and 40
respectively. Using the technique described
above we obtain the coarse-coded
representations of patterns for all the fuzzy
membership function inputs and outputs in our
system. We show here a sample of coarse-
coded representations of the patterns for the
various membership functions in tables 7 to 12.

Table 7. Shows a sample of coarse-coded data
used by membership function µsmall(x)

S.No. X µsmall(x)
 6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0

Table 8. Shows a sample of coarse-coded data
used by membership function µmedium(x)

S.No
. X µmedium(x)
 8 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 0 0 1 1 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 9. Shows a sample of coarse-coded data
used by membership function µlarge(x)

S.No. X µlarge(x)
 9 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 1 1 0 0
0 0 0 0 0 0 0
0 0

Table 10. Shows a sample of coarse-coded
data used by membership function µsmall (y)

S.No. Y µsmall (y)
 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0

0 0 0 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0

Table 11. Shows a sample of coarse-coded
data used by membership function µmedium(y)

S.No. y µmedium(y)
 6 0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Table 12. Shows a sample of coarse-coded
data used by membership function µlarge(y)

S.No. y µlarge(y)
 11 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp204-209)

4 Testing
Following are the details of neural networks
used in our work shown in table 13. The neural
networks N1 to N6 in figure 1 are feed forward
neural networks using back-propagation
algorithm.

Table 13. Shows the details of neural networks
used

Neural
Network

No. of
input
units

No.of
hidden
units

No.of
output
units

N1 63 52 44

N2 63 52 44

N3 63 52 44

N4 43 32 44

N5 43 32 44

N6 43 32 44

The fuzzy reasoning task was successfully
accomplished by using the system to give the
expected results. The value of system output z
obtained for two values of (x, y) are shown in
table 14.

Table 14. Shows the details of inputs (x,y) and

corresponding z values

Sr.no 1 2
x 16 33
y 11 20
µ1 0.6 0
µ2 0 0.05
µ3 0 0
µ4 0 0.05
µ5 0 0.2
µ6 0.05 0.05
z -12.04 29.14

Table 15. Shows the details of tests for fault-

tolerance

Neural
Network

No. of
Training
Patterns

No. of
Test
Patterns

No. of
Patterns
Corrected

No. of
Patterns
not
Corrected

 N1 20 20 20 0

 N2 20 20 19 1

 N3 20 20 19 1

 N4 20 20 20 0

 N5 20 20 20 0

N6 20 20 20 0

 Secondly, the performance of the above
coarse-coded Neuro-Fuzzy reasoning system
was tested for fault tolerance under noise
conditions for each of the neural networks N1 to
N6. In the tests, neural networks N1 to N6 are
trained with 20 patterns each. These training
patterns were made test patterns after
introducing 1 bit error at a random location in
each of these patterns. These artificially
introduced errors are simulating noise
conditions. Results are as shown in table 15.
The coarse-coded Fuzzy reasoning system was
found to be highly fault tolerant to errors as was
indicated by the test results.
 In the second set of tests conducted, the
performance of Coarse-coded fuzzy reasoning
system was checked for its generalization
ability on unseen test patterns. The system has
displayed good generalization ability on unseen
test patterns. Results are shown in table 16.

Table 16. Shows the details of tests for
generalization

Neural
Network

No. of
Training
Patterns

No. of
unseen
Test
Patterns

No. of
Patterns
Correctly
generalized

No. of
Patterns
not
Correctly
generalized

 N1 20 20 14 6

 N2 20 20 16 4

 N3 20 20 17 3

 N4 20 20 16 4

 N5 20 20 14 6

 N6 20 20 13 7

5 Conclusions

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp204-209)

We have designed and tested a Neuro-Fuzzy
reasoning system which uses distributed
coarse-coded representations with the neural
networks.The system implements in a novel
way the fuzzy membership functions for its
linguistic terms using neural networks with
coarse-coded distributed representations at
their inputs and outputs. The system has
successfully performed the fuzzy reasoning.
The coarse-coded fuzzy reasoning system
exhibited good generalization ability on unseen
test patterns thereby displaying learning ability.
The coarse-coded fuzzy reasoning system
exhibited very good fault tolerance under
simulated noise conditions as indicated by the
tests.

References:
[1] L. Shastri, Advances in SHRUTI: a neurally

motivated model of relational knowledge
representation and rapid inferencing using
temporal synchrony, Applied Intelligence,
11(1), 1999, pp. 79-108.

[2] C. Wendelken and L. Shastri, Multiple
instantiation and rule mediation in SHRUTI,
Connection Science, 16, 2004, pp. 211-217.

[3] L. Shastri, C. Wendelken, Seeking coherent
explanations --- a fusion of structured
connectionism, temporal synchrony and
evidential reasoning. Proceedings of
Cognitive Science 2000, Philadelphia, PA,
August 2000

[4] R. Sun, On variable binding in connectionist
networks. Connection Science, 4, 1992, pp.
93-124.

[5] G.E. Hinton, J.L. McClelland and D.E.
Rumelhart, Distributed representations. In
D.E.Rumelhart and J.L.McClelland, editors,
Parallel Distributed Processing, Vol.1.
Cambridge, MA. MIT Press, 1986

[6] Sriram.G.Sanjeevi, P. Bhattacharya.
Connectionist Reasoning System using
Coarse-coded Distributed Reprentations,
International conference on Systemics,
Cybernetics and Informatics,(ICSCI 2005),
vol 1, pp723-728, Hyderabad, January 06-
09, 2005.

 [7] S.G.Sanjeevi and P. Bhattacharya., A fault
tolerant Connectionist Model for Predicate
Logic Reasoning, variable binding: using
Coarse-coded Distributed Representations,
WSEAS Transactions on Systems, Issue 4,
Volume 4, April 2005, pp. 331-336.

 [8] Sriram.G.Sanjeevi, P. Bhattacharya. A
Connectionist Model for Predicate Logic

Reasoning using Coarse-coded Distributed
Representations, 9th International
conference on Knowledge-based &
Intelligent Information and Engineering
Systems(KES 2005) , LNCS Proceedings of
KES 2005, Springer-Verlag, Melbourne,
Australia, September 14th-16th, 2005.

[9] A.Browne, R. Sun, Connectionist inference
models, Neural Networks 14, 2001,
pp.1331-1355.

[10] T. Takagi and M. Sugeno. Fuzzy
identification of systems and its applications
to modeling and control. IEEE transactions
on systems, Man and Cybernetics, 15:116-
132, 1985.

[11] S. Haykins, Neural Networks, a
comprehensive foundation, Second edition,
New Jersey: Prentice hall, 1999

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp204-209)

