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Abstract: - In this paper, we describe a fault-tolerant Neuro-Fuzzy inference system  for performing 
fuzzy reasoning using  coarse-coded distributed representations. The system implements the fuzzy 
membership functions in a novel way using coarse-coded distributed representations for the  inputs 
and outputs of neural networks. Distributed representations are known to give advantages of fault 
tolerance, generalization and graceful degradation of performance under noise conditions. 
Performance of the Neuro-Fuzzy inference system  with regard to its ability to exhibit fault tolerance 
under noise conditions is studied. The system offered  very good results of fault tolerance under 
noise conditions. It has also exhibited good generalization ability on unseen test inputs. 
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1   Introduction 
Traditionally reasoning systems using predicate 
logic have been implemented using symbolic 
methods of artificial intelligence. Connectionist 
or neural network methods of implementation of 
reasoning systems describe an alternative 
paradigm. Among the connectionist reasoning 
systems they use two types of representational 
schemes. They are 1) localist and 2) distributed 
representational schemes.    
     Localist representational schemes represent 
each concept with an individual unit or neuron. 
In the distributed representational schemes [5] 
each unit or neuron is used in representation of 
multiple concepts and multiple units or neurons 
are used to represent a single concept. In the 
literature, some localist methods for predicate 
logic reasoning using connectionist networks 
have been described. The connectionist 
inference system SHRUTI [1], [2], [3] described 
a localist method where temporal synchrony 
was used to create bindings between variables 

and entities they represent. A variable x of the 
predicate give(x, y, z) is getting bound to an 
entity d if the nodes representing them fire 
during the same phase of time p1 during the 
predicate p activation period T. The time period 
T is divided into three phases p1, p2 and p3 
during which synchronous firing of variables x, 
y and z and entity nodes they bound 
respectively takes place. This method has used 
temporal synchrony as a mechanism to create 
localist representations.   CONSYDERR [4,9] 
described a localist method for variable binding 
and forward reasoning. It used an assembly or 
a set of interconnected nodes to represent each 
predicate p(x1…..xk). Each assembly contains 
one C node for storing the confidence value of 
the predicate p and k X nodes to store the 
binding values for k variables of the predicate p. 
A separate node is allocated for each variable 
of a predicate.   Since, these systems used 
localist representations, advantages of 
distributed representations were not obtained 
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by them. In our previous works [6,7,8] we 
proposed and described predicate logic 
reasoning systems using neural networks which 
used coarse-coded distributed representations 
to represent instantiated predicates. In these 
publications we have described the advantages 
of using the coarse-coded representations 
along with neural networks for performing 
predicate logic reasoning. However, the 
predicate logic reasoning is nonfuzzy and crisp 
reasoning and hence not suitable for fuzzy 
reasoning. Here we propose to examine the 
use of the coarse-coded distributed 
representations along with the neural networks 
in the implementation of  a Fuzzy-rule-based 
system. Our motivation is to make available the 
advantages of distributed coarse-coded 
representations to the neuro-fuzzy reasoning 
systems. It is investigated here in this work to 
examine the advantages gained by the Neuro-
Fuzzy reasoning system by using distributed 
coarse-coded representations. 
 
2  Fuzzy Rule  Base 
We propose to implement, as an example, the 
following TSK (Takagi-Sugeno) fuzzy rules in 
our system.  
1. If x is small and y is small, then 
  z = f1= -x + y/4 + 1   
2. If x is small and y is large, then 
  z = f2= 0.75y + 3 
3. If x is large and y is small, then 
  z =  f3 = x + 2 
4. If x is large and y is large, then 
  z =  f4 = x + y + 1 
5. If x is medium and y is large, then 
  z =  f5 = x/2 + y + 2 
6. If x is small and y is medium, then 
 z = f6 = -x +  y/2 + 1 
 
        For given crisp input values for x and y the 
inferred output z is calculated by  
 Z=(µ1f1+µ2f2+µ3f3+µ4f4+µ5f5+µ6f6)/(µ1+µ2+µ3 

+µ4+µ5 +µ6)   ………………...(1) 
where 
µ1= µsmall(x)* µsmall(y); 
µ2= µsmall(x)* µlarge(y); 
µ3= µlarge(x)* µsmall (y); 
µ4= µlarge (x)* µlarge(y); 
µ5= µmedium(x)* µlarge(y); 
µ6= µsmall(x)* µmedium(y)        
where µsmall(x) denotes the membership 
function for linguistic value small of the 
linguistic variable x,  

µmedium(x) denotes the membership function for 
linguistic value medium of the linguistic variable 
x, µlarge(x) denotes the membership function for 
linguistic value large of the linguistic variable x,  
µsmall(y) denotes the membership function for 
linguistic value small of the linguistic variable y, 
µmedium(y) denotes the membership function for 
linguistic value medium of the linguistic variable 
y, µlarge(y) denotes the membership function for 
linguistic value large of the linguistic variable y,  
and ‘*’ denotes the ‘Minimum’ operation 
between the indicated fuzzy membership 
functions. Our task is to start with the above 
fuzzy rule base and obtain the results of fuzzy 
inference correctly by our system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Neural Networks N1 to N6 implement  
fuzzy membership functions 
 
  The architecture for implementing the fuzzy 
membership functions with neural networks N1 
to N6 which use coarse-coded representations 
at their inputs and outputs is shown in the figure 
1 above. Neural networks N1 to N6 implement 
µsmall(x), µmedium(x), µlarge(x), µsmall (y), µmedium(y) 
and µlarge(y) respectively. x and y  values are 
coarse-coded before giving them as inputs to 
the neural networks N1 to N6. Neural networks 
N1 to N6 generate on their outputs respective 
membership function values in coarse-coded 
form. These membership function values after 
decoding will be in the interval [0, 1]. Each of 
the six circles at the right side of figure 1 are 
used to denote the ‘minimum’ operation 
performed on its inputs on the decoded 
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membership function values. They generate on 
their outputs µ1 to µ6 respectively. From these 
the value of  output z is computed using 
formula in equation (1) for a given x, y.  
 
3 Description of data used by 
fuzzy membership functions   
     We show here in the following tables 1 to 6 
the samples of the data needed by the fuzzy 
membership functions µsmall(x), µmedium(x), 
µlarge(x), µsmall (y), µmedium(y) and µlarge(y) 
respectively. We assume the data shown in 
tables 1 to 6 is obtained from the expert 
knowledge for the efficient performance of our 
fuzzy system.  
 
Table 1. Shows a sample of data  used by 
membership function µsmall(x) 
 

S.No. X µsmall(x) 
2 6.0 0.98 
10 30.0 0.08 

 
Table 2. Shows a sample of data  used by 
membership function µmedium(x) 
 

S.No. x µmedium(x) 
8 24.0 0.98 

14 42.0 0.1 

 
Table 3. Shows a sample of data  used by 
membership function    µlarge(x) 
 

S.No. x µlarge(x) 
12 36.0 0.3 
16 48.0 0.96 

 
Table 4. Shows a sample of data  used by 
membership function µsmall (y) 
 

S.No. y µsmall (y) 
3 6.0 0.95 
5 10.0 0.6 

 
Table 5. Shows a sample of data  used by 
membership function µmedium(y) 
 

S.No.          y µmedium(y) 
   6       12.0      0.3 
  12       24.0       0.4 

 
Table 6. Shows a sample of data  used by 
membership function µlarge(y) 
 

S.No.         y  µlarge(y) 
  11        22.0       0.45 
  14        28.0        0.95 

 
3.1 Obtaining Coarse-coded Distributed 
Representations 
We describe here how to obtain coarse-coded 
representations of the data shown in the tables 
1 to 6. If the data items to be coarse-coded lie 
in the interval [R1, R2] where R1 and R2 are 
real numbers then we divide the interval [a, b] 
into N sub-intervals, where a = floor(R1) and b 
= ceiling(R2). Suppose we need to encode the 
real number R present in the kth sub-interval 
we proceed as follows. If R is in lower half of 
the sub-interval k we represent R with a localist 
pattern having (N+1) bits, with (k)th  bit 1 and  
other bits ‘zero’. If R is in upper half of the sub-
interval k we represent R with a localist pattern 
having N+1 bits, with (k+1)th  bit 1 and other bits 
zero. We illustrate the coarse-coding process 
through an example. For coarse-coding output 
values of membership functions we chose N = 
40. Consider the 2nd row of table 1. The value 
of  µsmall(x) is 0.08. Since this value belongs to 
lower half of 4th  sub-interval we encode it with 
a localist pattern of 41 bits with 4th bit 1 and all 
other bits ‘zero’. 
‘00000000000  0000000000  0000000000  
0000001000’                ……….……..(2) 
We are yet to convert this localist pattern into 
the coarse-coded pattern. We add three leading 
zeroes to left side of the above pattern for the 
reason described below to get the following 
pattern 
‘00000000000000  0000000000  0000000000  
0000001000’. 
      We illustrate the process of converting the 
above localist pattern into the coarse-coded 
pattern. We view the above pattern as being 
kept in overlapping coarse zones of length of 4 
consecutive bits and encode the zone as 1 if 
there is at least one 1 bit in that zone or else as 
0. We then consider next coarse zone and 
encode it as 1 or 0 following above method. We 
do this process left to right starting from the left 
most bit. We do this encoding process for 
above localist pattern to get the following 
coarse-coded pattern  
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‘00000000000000  0000000000  0000000000  
0001111000’. 
     The reason we have added three leading 
zeros to the localist pattern in (2) is to enable 
us to coarse-code the pattern even if the 1 bit 
occurred in the 41st bit (from the right side) of 
the pattern. 
    Coarse-coding can be applied when the 
number of 1’s in the original string is sufficiently 
sparse. If the number of 1’s in the original string 
is not sufficiently sparse then coarse-coded 
string when decoded will not yield the original 
string.   Coarse-coding increases the 
information capacity [5] by  increasing the 
number of units active at a time compared to 
localist codes which have sparsely populated 
1’s. The amount of information conveyed  by a 
unit that has a probability p of being ‘1’ is   

– plog (p) – (1 – p) log(1 – p).  
     The coarse-coding process involves making 
an approximation and hence an error. To 
decrease the error to the desired limits, we 
choose an appropriate  value of ‘N’. ‘x’ and ‘y’ 
values used by our fuzzy system are real 
numbers in the range 0 to 60.0, 0 to 40.0 
respectively. The N values for coarse-coding 
them were chosen to be 60 and 40 
respectively. Using the technique described 
above we obtain the coarse-coded 
representations of patterns for all the fuzzy 
membership function inputs and outputs in our 
system. We show here a sample of coarse-
coded representations of the patterns for the 
various membership functions in tables 7 to 12. 
 
Table 7. Shows a sample of coarse-coded data 
used by membership function µsmall(x) 
 

S.No.              X   µsmall(x) 
    6  0 0 0 0 0 0 0 0 

0 0 0 0 0    0 0 
0 0 0 0 0 0 0 0   
0 0 0 0 0 0 0 0 
0 0   0 0 0 0 0 
0 0 0 0 1   1 1 
1 0 0 0 0 0 0 0   
0 0 0 0 0 0 0 0 
0 0   

 0 0 0 0 0 0 0 0 
0 0 0 0 0 0    1 1 
1 1 0 0 0 0 0 0   
0 0 0 0 0 0 0 0 0 
0   0 0 0 0 0 0 0 
0 0 0 

Table 8. Shows a sample of coarse-coded data  
used by membership function µmedium(x) 
 

S.No
.            X µmedium(x) 
    8  0 0 0 0 0 0 0 0 0 

0 0 0 0    0 0 0 0 
0 0 0 0 0 0   0 0 

 0 0 1 1 1 1 0 
0 0 0 0 0 0 0    
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0   
0 0 0 1 1 1 1 0 0 
0   0 0 0 0 0 0 0 
0 0 0   0 0 0 0 0 
0 0 0 0 0   

       

0 0   0 0 0 0 0 
0 0 0 0 0   0 0 
0 0 0 0 0 0 0 0 

 
Table 9. Shows a sample of coarse-coded data  
used by membership function µlarge(x) 
 

S.No.              X    µlarge(x) 
   9 0 0 0 0 0 0 0 0 

0 0 0 0 0    0 0 
0 0 0 0 0 0 0 0   
0 1 1 1 1 0 0 0 
0 0   0 0 0 0 0 
0 0 0 0 0   0 0 
0 0 0 0 0 0 0 0   
0 0 0 0 0 0 0 0 
0 0   

 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0    
0 0 0 0 0 0 0 
0 0 0   0 0 0 0 
0 1 1 1 1 0   0 
0 0 0 0 0 0 0 
0 0 

 
Table 10. Shows a sample of coarse-coded 
data  used by membership function µsmall (y) 
 

S.No.              Y   µsmall (y) 
   3 0 0 0 0 0 0 0 0 

0 0 0 0 0    0 0 
0 0 0 0 0 0 0 0   
0 0 0 0 0 0 0 0 
0 0   0 1 1 1 1 0 
0 0 0 0    

0 0 0 1 1 1 1 
0 0 0 0 0 0 0    
0 0 0 0 0 0 0 
0 0 0   0 0 0 
0 0 0 0 0 0 0   
0 0 0 0 0 0 0 
0 0 0 

 
Table 11. Shows a sample of coarse-coded 
data  used by membership function µmedium(y) 
 

S.No.              y µmedium(y) 
   6 0 0 0 0 0 0 0 

0 0 0 0 0 0    
0 0 0 1 1 1 1 
0 0 0   0 0 0 0 
0 0 0 0 0 0   0 
0 0 0 0 0 0 0 
0 0         

0 0 0 0 0 0 0 0 
0 0 0 0 0 0    0 
0 0 0 0 0 0 0 0 
0   0 1 1 1 1 0 
0 0 0 0   0 0 0 
0 0 0 0 0 0 0 

 
Table 12. Shows a sample of coarse-coded 
data  used by membership function µlarge(y) 
 

S.No.               y  µlarge(y) 
  11 0 0 0 0 0 0 0 0 

0 0 0 0 0    0 0 
0 0 0 1 1 1 1 0   
0 0 0 0 0 0 0 0 
0 0    0 0 0 0 0 
0 0 0 0 0          

0 0 0 0 0 0 0 
0 0 0 0 0 0 0    
0 0 0 0 0 0 0 
0 0 1   1 1 1 0 
0 0 0 0 0 0   0 
0 0 0 0 0 0 0 
0 0 
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4 Testing 
Following are the details of neural networks 
used in  our work shown in table 13. The neural 
networks N1 to N6 in figure 1 are feed forward 
neural networks using back-propagation 
algorithm. 
 
Table 13. Shows the details of neural networks 
used 
 

Neural 
Network 

No. of 
input 
units 

No.of 
hidden 
units 

No.of 
output 
units 

N1 63 52 44 

N2 63 52 44 

N3 63 52 44 

N4 43 32 44 

N5 43 32 44 

N6 43 32 44 

 
The fuzzy reasoning task was successfully 
accomplished by using the system to give the 
expected results. The value of system output z 
obtained for two values of (x, y) are shown in  
table 14. 
 
Table 14. Shows the details of inputs (x,y) and 

corresponding z values 
  

Sr.no 1 2 
x 16 33 
y 11 20 
µ1 0.6 0 
µ2 0 0.05 
µ3 0 0 
µ4 0 0.05 
µ5 0 0.2 
µ6 0.05 0.05 
z -12.04 29.14 

 
Table 15. Shows the details of tests  for fault-

tolerance 
 

Neural 
Network 

No. of 
Training 
Patterns 

No. of 
Test 
Patterns 

No. of 
Patterns 
Corrected 

No. of 
Patterns 
not 
Corrected 

 
 N1 20 20 20 0 

 
 N2 20 20 19 1 

 
 N3 20 20 19 1 

 
 N4 20 20 20 0 

 
 N5 20 20 20 0 

  
N6 20 20 20 0 

 
     Secondly, the performance of the above 
coarse-coded Neuro-Fuzzy reasoning system 
was tested for fault  tolerance under noise 
conditions for each of the neural networks N1 to 
N6. In the tests, neural networks N1 to N6 are 
trained with 20 patterns each.  These training 
patterns were made test patterns after 
introducing 1 bit error at a random location in 
each of these patterns. These artificially 
introduced errors are simulating noise 
conditions. Results are as shown in table 15. 
The coarse-coded Fuzzy reasoning system was 
found to be highly fault tolerant to errors as was 
indicated by the test results.  
   In the second set of tests conducted, the 
performance of Coarse-coded fuzzy reasoning 
system was checked for its generalization 
ability on unseen test patterns. The system has 
displayed good generalization ability on unseen 
test patterns. Results are shown in table 16. 
 

Table 16. Shows the details of tests for 
generalization 

 
Neural 
Network 

No. of 
Training 
Patterns 

No. of 
unseen 
Test 
Patterns 
 

No. of 
Patterns 
Correctly 
generalized 

No. of 
Patterns 
not 
Correctly 
generalized 

 
 N1   20   20   14    6 

 
 N2   20   20   16    4 

 
 N3   20   20   17    3 

 
 N4   20   20   16    4 

 
 N5   20   20   14     6 

 
 N6   20   20    13     7 

 
 
5   Conclusions 
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We have designed and tested a Neuro-Fuzzy 
reasoning system which uses distributed 
coarse-coded representations with the neural 
networks.The system implements in a novel 
way the fuzzy membership functions for its 
linguistic terms  using neural networks with 
coarse-coded distributed representations at 
their inputs and outputs.  The system has 
successfully performed the fuzzy reasoning. 
The coarse-coded fuzzy reasoning system 
exhibited good generalization ability on unseen 
test patterns thereby displaying learning ability. 
The coarse-coded fuzzy reasoning system 
exhibited very good fault tolerance under 
simulated noise conditions as indicated by the 
tests.  
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