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Abstract: A functional equivalence of feed-forward networks has been proposed to reduce the search space of
learning algorithms. The description of equivalence classes has been used to introduce a unique parametrization
property and consequently the so-called canonical parameterizations asrepresentatives of functional equivalence
classes. A novel genetic learning algorithm for RBF networks and perceptrons with one hidden layer that operates
only on these parameterizations has been proposed. Experimental resultsshow that our procedure outperforms
the standard genetic learning. An important extension of theoretical resultsdemonstrates that our approach is also
valid in the case of approximation.
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1 Introduction

We consider a feed-forward network as a device
for computing a real function of several real vari-
ables which depend on a set of network parameters
(weights). A function realized by the network is re-
ferred to as aninput/output (or I/O) functionof the
network. The logical question which functions can be
approximated by a class of networks of a given type
has been answered in recent years. A so calleduni-
versal approximation property(the possibility to ap-
proximate any reasonable, e.g. continuous, function
arbitrarily well) was examined. It has been proven
that many common network architectures, including
multilayer perceptrons and RBF networks which sat-
isfy certain mild conditions on the activation or radial
function, posses this property.

Thus, theoretically, for any reasonable function
we can find a network of a given type that computes an
arbitrarily close approximation of this function as its
I/O function. It means that during the learning phase,
the parameters of the network can be assigned in such
a way that the desired function (usually described by
a set of examples of input/output values) is approxi-
mated with arbitrary precision. In practice this typi-
cally requires to solve a non-linear optimization prob-
lem in the high-dimensional space of network param-
eters. This motivates one to search for possibilities to
simplify this task. One of the approaches is to reduce
the search space by identifying the classes of func-
tionally equivalent networks and by selecting a single

representative of each class. An algorithm which is
able to restrict the learning only to these representa-
tives operates on much smaller search space and thus
may perform faster.

Hecht-Nielsen [2] pointed out that characteriza-
tion of functionally equivalent network parameteriza-
tions might speed up some learning algorithms. Sev-
eral authors studied functionally equivalent weight
vectors for one hidden layer perceptron-type net-
works with various activation functions ([1], [4],
[8]). In [5], [6] we have characterized the form of
functional equivalence of Radial Basis Function net-
works with Gaussian radial function. The notion of
unique parameterization property has been proposed
by Kůrková to summarize results common to impor-
tant non-trivial network architectures.

A very important question is whether the preced-
ing results are also valid in the approximation case.
In practice we usually deal with inexact values, either
because of the nature of the problem, or because of
the limited precision of machine computations. The
“exact” formulation of results from section 2 does not
suffice here. Fortunately, the original results presented
in section 2 assure that the functional equivalence and
unique parameterization property is still valid when
we consider the approximation of functions.

Based on these results we are able to construct
a factorization of the whole parameter space into the
classes of functionally equivalent network parameter-
izations. A unique representative—calledcanonical
parameterization—is selected from each equivalence
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class by defining a certain condition that the network
parameters have to satisfy. The set of all canonical
parameterizations corresponds to minimal search set
introduced by Hecht-Nielsen and in our case it forms
a1/k! part of the whole parameter space.

In order to take advantage of the description of
canonical parameterization we propose a new learn-
ing algorithm of the genetic type. The basic idea is
that the standard genetic operators are redefined such
that they preserve the canonical property of parame-
terizations. This way, the algorithm is able to search
only among canonical parameterizations, which re-
sults in much smaller search space and consequently
faster learning.

To verify our theoretical considerations we have
tested the proposed algorithm on several problems.
The results for RBF networks confirm the expecting
speedup of canonical genetic learning which is about
100% in comparison to the standard GA.

2 Theoretical results

From now on we consider two types of feed-forward
network architectures. By anRBF networkwe mean
the feed-forward network with one hidden layer con-
taining radial-basis-function (RBF) units with a radial
functionψ : R+ → R and a metricsρ onRn (n is the
number of input units) and with a single linear output
unit. Such a network computes the function:

f(x) =
k

∑

i=1

wiψ

(

ρ(x, ci)

bi

)

. (1)

Here, the perceptron networkmeans a feed-
forward network withn inputs, one hidden layer con-
taining perceptron units and one linear output unit.
This network computes the functionf : Rn → R
of the form:

f(x) =
k

∑

i=1

wiψ(vix + bi) , (2)

wherek ∈ N is the number of hidden units,wi, bi ∈
R, vi ∈ Rn andψ : R → R is an activation function.

Definition 1 A radial-basis-function network param-
eterization with respect to(ψ, n, ρ) is a sequence
P = (wi, ci, bi; i = 1, . . . , k), wherek is the number
of hidden units and for thei-th hidden unit the vector
ci ∈ Rn describes the centroid while the real numbers
bi andwi are widths and output weights, respectively
(see(1)). If additionally, for everyi ∈ {1, . . . , k}
wi 6= 0, and for everyi, j ∈ {1, . . . , k}, such that
i 6= j eitherci 6= cj or bi 6= bj , it is calleda reduced
parameterization.

Definition 2 Similarly, aperceptron network param-
eterization with respect to(ψ, n) is a sequenceQ =
(wi,vi, bi; i = 1, . . . , k) with the meaning of sym-
bols described by (2). Additionally, if for everyi ∈
{1, . . . , k} wi 6= 0, and for everyi, j ∈ {1, . . . , k}
i 6= j implies that eithervi 6= vj , or bi 6= bj and
there exists at least onei such thatvi = 0, it is called
a reduced parameterization.

It is clear that a parameterizationP (or Q) deter-
mines a unique I/O function of an RBF network ac-
cording to the formula (1) (or a perceptron network
according to (2)).

Definition 3 Two network parameterizationsP and
P′ are functionally equivalentif they determine the
same input/output function.

Definition 4 Two network parameterizations are
called interchange equivalent, if k = k′ and there ex-
ists a permutationπ of the set{1, . . . , k}, such that
for each i ∈ {1, . . . , k} wi = w′

π(i) and bi =

b′
π(i) and ci = c′

π(i) for RBF network parameteriza-
tions, orvi = v′

π(i) for perceptron network parame-
terizations.

We are interested in relationship between the
functional equivalence and interchange equivalence.
Clearly the later implies the former, so it is the non-
trivial reverse implication that is in our focus.

Definition 5 Let n ∈ N . Functionψ has aunique
parameterization propertywith respect ton, if for ev-
ery two reduced parameterizations of perceptron net-
works w.r.t.(ψ, n) (or RBF networks w.r.t.(ψ, n, ρ))
functional equivalence implies interchange equiva-
lence.

The most general characterization of functions
satisfying the unique parameterization property of
perceptron networks is due to [4].

Theorem 6 Let ψ be bounded, non-constant and
asymptotically constant activation function,n ∈ N .
Thenψ has a unique parameterization property of
perceptron networks with respect ton, if and only if
it is neither self-affine, nor affinely recursive.

Many popular activation functions, including lo-
gistic sigmoid or Gaussian, are not affinely recursive.
On the contrary, polynomials are affinely recursive, so
they do not posses the unique parameterization prop-
erty. Self-affinity requires a finer analysis which is de-
scribed in the original paper. Roughly speaking, triv-
ial parameter changes such as sign flips also have to
be taken into account.
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In the case of RBF networks, the standard choice
of a radial function is Gaussian and the most popular
metrics are those induced by various inner products
(such as Euclidean), or the maximum metrics. Our
previous results [5] show that the unique parameteri-
zation property is satisfied in these cases.

Theorem 7 Let n be a positive integer,ρ metrics on
Rn induced by an inner product, or a maximum met-
rics. Thenγ(t) = exp(−t2) has a unique parameter-
ization property of a corresponding RBF network.

Preceding theorems enables to describe a canon-
ical representation of a network computing a partic-
ular function easily. One of the possible choices
is to impose a condition on a parameterization
that weight vectors corresponding to hidden units
are increasing in a lexicographic ordering on a
parameterization. Represent a parameterization
{wi, ki, ci; i = 1, . . . , k} or {wi, ki,vi; i = 1, . . . , k}
as a vectorp = {pi, . . . ,pk} ∈ Rk(n+2), where
pi = {wi, bi, ci1, . . . , cin} ∈ Rn+2, or pi =
{wi, bi, vi1, . . . , vin} ∈ Rn+2, are weight vectors cor-
responding to thei-th hidden RBF, or perceptron, unit.
Let ≺ denotes the lexicographic ordering onRn+2,
i.e. for p,q ∈ Rd+2 p ≺ q if there exists an index
m ∈ {1, . . . , d+ 2} such thatpj = qj for j < m, and
pm < qm.

Definition 8 We call a network parameterizationP
canonicalif p1 ≺ p2 ≺ . . . ≺ pk.

In this terminology, theorems 6 and 7 guarantee
that for every network parameterization a canonical
parameterization determining the same input-output
function exists. Thus, the set of canonical parameter-
izations corresponds to a minimal search set—weight
space subset containing exactly one representative of
each class of functionally equivalent weight vectors—
proposed in [2].

An important extension of our previous results
concerning the approximate version of functional
equivalence exists. The strict functional equivalence,
as was introduced, may not be a sufficient answer in
many problems. Especially when dealing with ap-
proximation problems we are interested in the case
where two functions realized by networks are not ex-
actly the same but their difference is small. This case
is also of a big importance in practical problems when
we, by nature, operate with inexact values.

3 Genetic learning

In order to take advantage of the previous results a
learning algorithm that can operate only on canoni-
cal parameterizations is needed. Neither back propa-
gation nor more complicated three step learning algo-
rithms of RBF networks (cf. [3]) are suitable, since the
analytical solution obtained in each step of the itera-
tive process cannot in principle be limited to a certain
weight space subset. This is not so with genetic al-
gorithm whose operations can be changed to preserve
the property of being canonical.

Genetic algorithm

The core of canonical GA is the same as usual: In
the beginning a population ofm canonical parameter-
izationsP0 = {P1, . . . ,Pm} is generated at random.
Having populationPi, the successive populationPi+1

is generated by means of three basic genetic opera-
tions: reproduction, crossoverandmutationthat are
proposed such that they generate only canonical pa-
rameterizations.

pip p1 k

wi ib c ci1 in. . .

. . . . . .

Figure 1: An individual: encoded parameters of a
problem

For the overall GA scheme cf. Table 3.

Initial population

To generate theinitial population of canonical pa-
rameterizations at random, one has to preserve the
property that for each parameterizationP it holds:
ps ≺ ps+1.

Reproduction

The reproductionoperator represents a probabilistic
selection of parameterizationPl ∈ Pi according to
the values of objective functionG(Pl) which is com-
puted by means of the error function (i.e. the sum of
distances between the actual and desired output of the
network over all of the patterns from the training set).

Thus, we have

G(P) = C − E = C −
z

∑

j=1

||fP(xj) − yj ||
2,
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Genetic learning
var Old, New: Population of N Individuals;

Father, Mother, Son, Daughter: Individual;
i: integer;
p, max: real; begin

(*initialization*)
for i:= 1 to N do
begin

Father:= random Individual;
p:= objective-function(Father);
put (Father,p) to Old

end;
repeat

(* next population *)
max:= 0;
select Father from Old;
select Mother from Old;
crossover(Father,Mother,Son,Daughter);
mutation(Son);
mutation(Daughter);
p:= objective-function(Son);
put (Son,p) to New;
if p>max then max:= p;
p:= objective-function(Daughter);
put (Daughter,p) to New;
if p>max then max:= p;

until max<end-criterion
end.

Table 1: Scheme of a simple genetic algorithm

whereyj is the desired network output,f(xj) repre-
sents the actual response of the network when the in-
putxj is presented, andC is the maximal error.

For each individualPl the value of its objective
functionG(Pl) is computed and then normalized by
dividing by the sum of objective function values over
all individuals in the population:

pl =
G(Pl)

∑m
r=1G(Pr)

.

The numberpl then represents the probability with
which the parameterization is selected at random. We
use the roulette wheel selection together with the eli-
tist mechanism.

Mutation

The mutation operates on two levels—first an ele-
mentps is chosen randomly as a candidate for mu-
tation. Its neighborsps−1 andps+1 then determine
the lower and upper border of the range in which the
ps is changed at random.

Crossover

Thecrossoveroperator chooses two parameterizations
P = (p1, . . . ,pk) andQ = (q1, . . . ,qk) in Pi and

P’

2 s-1 s s+11

P

... ...

2 s-1 s s+11

P

... ...

k

k

Figure 2: The mutation operator createsP′ ∈ Pi+1

from P ∈ Pi.

generates a new offspringP′ ∈ Pi+1. A position
s is found at random such that the parameterization
P′ = (p1, . . . ,ps, qs+1, . . . ,qk) still satisfies the
condition:ps ≺ qs+1.

2 s-1 s s+11

P

... ...

k

2 s-1 s s+11

... ...

k

P’

2 s-1 s s+11

P

... ...

k

Q

Figure 3: The crossover operator createsP′ ∈ Pi+1

by combiningP andQ fromPi.

4 Experiments

In the following we describe our experiments test-
ing the performance of canonical and standard learn-
ing algorithms of feed-forward networks on two prob-
lems: the XOR problem and the approximation of
sin(x) · sin(y) function. The experiments were made
on the cluster of PC with 1.4Ghz Pentium and 1GB
RAM running Linux. The software system called
Bang has been used to perform these tests.
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The first task was a XOR problem defined by four
training examples. We used 50 networks in the pop-
ulation and elitist selection for the two best networks.
Error values for the first 500 iterations are plotted on
Figure 4. Both algorithms were able to successfully
learn the given task quite fast. (cf. Table 2); the canon-
ical algorithm was about two times faster in terms
of error decrease. Running times of both algorithms
were roughly identical— about .4 seconds per 1000
iterations.

The second experiment was an approximation
of the functionf(x, y) = sin(x) · sin(y) given by
a 10 × 10 mesh of points regularly taken from a
[0; 2π] × [0; 2π] square. Again, both algorithms with
50 networks in population were used with the same
elitist rate as in the previous experiment. The learning
speed is shown on Table 2 and Figure 5. The per-
formance was similar to the previous experiment: the
canonical GA was again about twice faster. The aver-
age speed of 1000 iterations was 5 seconds.

XOR

E canonical standard
10−1 50 76
10−2 104 268
10−3 443 705
10−4 934 1553
10−5 1075 1988
10−6 1733 4485
10−8 7623 >10000

Table 2: Number of iterations necessary to reach a
particular error threshold for the XOR experiment.

Another set of experiments has been performed
to explore the influence of different population and
network sizes (i.e. numbers of networks in one pop-
ulation of GA, and number of units in the network).
Figures 6, 7, and 8 illustrate the results for the XOR
task. It shows that the population size does not play

sin(x) · sin(y)

E canonical standard
10 177 200
5 313 765
3 489 1043
2 1268 —

Table 3: Number of iterations necessary to reach a
particular error threshold for thesin(x) · sin(y) exper-
iment
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Figure 4: Comparison of error decrease for the XOR
experiment.

an important role (as long as it stays within a reason-
able range). On the other hand, number of units can
improve the approximation in a relevant way.
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Figure 5: Comparison of error decrease for thesin(x)·
sin(y) experiment.

5 Conclusions

We have presented results concerning functional
equivalence property for the case of Gaussian RBF
networks and one hidden layer perceptron networks.
Based on these we have proposed the canonical ge-
netic algorithm for learning feed-forward neural net-
works. The proposed algorithm has been realized and
tested for the case of RBF networks with Gaussian
units and perceptron networks with logistic sigmoid.
It has been shown that for small/middle-size tasks the
canonical GA is about twice faster in reaching the
same error treshold. Moreover, the canonical GA does
not show any relevant increase in time for one iteration
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Figure 6: Comparison of error decrease for standard
GA with various number of hidden units (y scale rep-
resentslog10 E).
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Figure 7: Comparison of error decrease for canoni-
cal GA with various number of hidden units (y scale
representslog10 E).

in comparison to standard GA. Thus, the twice better
times hold also in real time.

An interesting comparison would be against the
standard learning algorithms of feed-forward net-
works, such as back propagation. This is one of the di-
rections of our further work. A thorough comparison
of RBF networks learning methods (including genetic,
gradient-based and three-step learning), and their per-
formace has been published in [7].
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