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Abstract: - This paper presents a method for synthesizing sigma-delta (Σ-∆) modulators. The synthesis method 
is derived from a new noise-shaping equation which interprets the modulator as a device performing 
frequency-weighted minimization of the modulation error. In the equation, a noise-shaping function which 
spectrally shapes the modulation error is chosen to be an elliptic filter. The resulting elliptic noise-shaping 
function, featuring a high attenuation of in-band noise, satisfies the modulator’s stability requirement. A four-bit 
6MHz wideband modulator and a single-bit 10.7MHz bandpass modulator are designed to demonstrate the 
superiority of this simple synthesis method.  
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1   Introduction 
Sigma-delta modulation uses negative feedback to 
quantize a signal in attempting to achieve higher 
resolution within the signal bandwidth [1]. However, 
the nonlinear quantizer in a feedback loop makes the 
dynamics extremely complex and difficult to analyze. 
Despite the lack of an exact theory to stabilize the 
modulator, engineers still employ without hesitation 
the Σ-∆ modulation technique in various applications, 
such as data converters [2], class-D amplifiers [3], 
digital microphones [4] and many more. 

A well-known rule of thumb for designing a 
stable modulator was introduced by Lee [5], which 
constrained the out- of-band gain of the noise transfer 
function to prevent the accumulation of quantization 
error. Also, based on Lee’s concept, Schreier 
introduced a method for designing a noise transfer 
function and wrote a popular MATLAB function 
“synthesizeNTF” [6]. Another popular method 
introduced by Engelen and Plassche [7] was based on 
the describing function method, which modeled the 
quantizer as a single gain with phase uncertainty and 
synthesized the modulator using the root locus 
method. Although these methods or rules of thumb 
provide insights into the modulator design, but they 
still lack an exact theory to support and verify the 
designs. 

In a new book, Unsolved Problems in 

Mathematical Systems and Control Theory, 
sigma-delta modulator synthesis is included as one of 
the open problems [8]. The question of how to 
synthesize a high-order high-resolution stable 
modulator still baffles most of the practicing 
engineers and researchers who design or study 

sigma-delta modulation. However, some progress 
has been reported in author’s recent papers [9, 10], 
which present a synthesis method for a single-bit Σ-∆ 
modulator based on the theory of sliding modes. 
From this sliding mode aspect, the modulator can be 
thought of as a device performing constrained 
frequency-weighted minimization of the modulation 
error. This constrained minimization interpretation 
not only advances the understanding of sigma-delta 
modulation, but also helps develop new types of 
feedback quantization schemes, see [11, 12]. 

This paper attempts to provide a modulator 
synthesis method which is generally applicable to 
both single-bit and multi-bit cases. First, Section 2, 
following the work of [11, 12], presents a 
constructive derivation of sigma-delta modulation 
and its noise-shaping equation. Section 3 gives the 
stability conditions for the modulator. Finally, based 
on the noise-shaping equation and the stability 
condition, Sec. 4 provides a method for designing a 
high-performance modulator.  
 

Fig. 1. Constrained frequency-weighted minimization 
of the modulation error 

 

2  A Pathway to Σ-∆ Modulation 
Taking the viewpoint of [10, 11, 12], this section 
provides a constructive derivation of sigma-delta 
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modulation. The derivation helps us to develop a new 
modulator synthesis method. The derivation begins 
with the formulation of a noise-shaping modulation 
problem as a constrained frequency-weighted 
minimization problem shown in Fig. 1. Given a filter 
W and an input signal r, y is selected from a finite set 
of quantization levels at each sampling time, to 
minimize the output level of a linear filter W.  

The idea behind this minimization is simple. 
Filter W plays a role of a frequency-weighted 
function, specifying the frequency range over which 
the minimization is emphasized. The filter output e in 
Fig. 1 is a frequency-weighted modulation error, 
which can be written in the following z-domain 
representation,  
 

)],()()[()( zYzRzWzE −=                  (1) 

 

where E, R, and Y are the z-transforms of e, r, and y, 
respectively. The magnitude minimization of E will 
be more emphasized in the frequency band where W 
has larger magnitude. If the output level of W to r-y 
was made small, then most of the frequency contents 
of the modulation error would be in the stopband of 
W. Equation (1) can be alternatively written as, 
 

)()()()( 1 zEzWzRzY −−= .                 (2) 

 

Equation (2) is called a noise-shaping equation, see 
also [10, 12]. The quantized signal Y contains the 
desired signal R and unwanted noise W

--1
E. Transfer 

function W
--1, which spectrally shapes the residual 

minimization error E, is referred to as a noise-shaping 
function in this paper.  

Assume that W(z) is an nth-order sampled-data 
filter of relative degree zero, having no common 
factor between its numerator and denominator. 
Without loss of generality, the gain of W is assumed 
to be normalized such that 1)( =∞W  (see Remark 5 

in Sec. 3). In this case, W has the state-space 
representation [A, B, C, D] with D=1 (i.e., 

)(1)( 1 zWBAzIC =+− − ). The output e of W can be 

described by, 
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Taking an N-bit normalized uniform quantization 

with quantization step )12/(2 −=∆ N gives a 

candidate set of quantization levels, 
S={-1, ∆+−1 , ∆+− 21 , …, ∆−1 , 1}. A simple 
quantization scheme is to choose y(k) from set S to 

minimize the level of  e(k) in the second equation of 
(4) at each sampling time, yielding the following 
optimal solution (the horizon-one optimal solution of 
[11]), 
 

( ))()( kuQky =                      (5) 

with 

)()()( krkCxku +=                   (6) 

 

where ))(( kuQ quantizes )(ku  to the nearest value in 

S. The resulting block diagram is shown in Fig. 2. 
Notably, the resulting feedback modulator is exactly 
a sigma-delta modulator, performing noise shaping 
via feedback connection of a linear filter with a 
quantizer.  It is interesting to note that the modulator 
in Fig. 2 is exactly a generalization of the topology 
proposed by Silva et al. [13], which excels in the 
low-distortion property. 

 

 

Fig. 2. Optimal modulation scheme that minimizes |e(k)| . 
 
 

3   Stability Analysis 
This section analyzes the stability of the sigma-delta 
modulator of Fig. 2 by treating the modulator output 
y as a quantized state feedback control. From (4)-(6), 
the dynamics of the modulator can be rewritten as, 
 

)()()()1( kBekxBCAkx +−=+ ,                           (7) 

 
where signal e, the output of filter W, is also the 
quantization error, 
 

))(()()( kuQkuke −= .    (8) 

 
The governing equation (7) is a nominal system 
subject to a perturbation caused by the quantization 
error. The nominal system in (7) is stable if matrix 
A-BC is Hurwitz. Quantizer input u can be 
represented in the z-domain as, 
 

)()]([)()( 1 zBEBCAzICzRzU −−−+=                 

)()](1[)(        1 zEzWzR −−+=                               (9) 
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As a result, the block diagram of the modulator can 
be equivalently redrawn in an error feedback 
configuration displayed in Fig. 3. Note that, since 

1)( =∞W , loop filter 1-W
--1 is strictly proper, 

meaning that the error feedback topology in Fig. 3 is 
realizable. The poles of 1-W

--1, namely the zeros of W, 
are the characteristic roots of the nominal system. 
Designing a stable nominal system plus the 
prevention of quantizer overload suffices to 
guarantee the stability of the modulator. 

 
Fig. 3. An equivalent error-feedback topology. 

 
 
Proposition 1 (Stability in the small) Let ||.||1 denote 
the l1 norm of a transfer function. For the modulator 
of Fig. 2 or 3 with zero initial condition, if the 
following conditions are satisfied, 

(i) Matrix A-BC is Hurwitz, 

 (ii) ( ) k-Wkr ∀−−≤ −∆ 111)( 1
1 |||| 

2
  , 

then the modulator is stable and the quantization 
error e is bounded by, 
 
 2/ || ∆≤e .                 (10) 

 

Proof. The zero initial condition x(0)=0 and the input 
level constraint (ii) ascertain that the quantizer input 
level is initially within the quantization range 
|u| ≤ 1+ 2/∆  and accordingly 2/ || ∆≤e . Also, 

condition (i) guarantees the stability of 1- W
--1, and 

thus according to the linear system theory,  
 

 ∞
−

∞ −+≤ ||||||1|||||||)(| 1
1 eWrku ,                      (11) 

 

where ∞|||| r denotes the peak absolute value of 

signal r. Inequality (11) together with input level 
constraint (ii) and 2/ || ∆≤e  prevents the quantizer 

input level from exceeding the quantization range 
and thereby 2/ || ∆≤e , which once again making 

2/1 || ∆+≤u . Therefore, u and e remain bounded all 

the time, and so are the state variables x.        ▄ 

Some remarks on Proposition 1 are given below. 

Remark 1. Requiring the modulator to have zero 
initial state is not always necessary; however, a 
nonzero initial state may reduce the allowed 
modulator input level, or even worse to cause 
instability. In practice, a zero initial state can be 
achieved by resetting all integrators of the 
modulator’s loop filter when powered on.  

Remark 2. According to condition (i) in Proposition 
1, the poles of the noise-shaping function W

--1  must 
be stable, but nothing about its zeros is mentioned. In 
fact, the zeros of W

--1  affect the stability margin as 
well as the performance. Moving the zeros outside 
the unit circle will help reduce the 
harmonically-related tones at the cost of a lower 
stability margin (i.e., lower allowable input level) 
and higher noise floor [14, 15]. Placing the zeros 
optimally spread along the unit circle within the 
signal bandwidth theoretically achieves the highest 
signal-to-noise ratio (SNR) [16]. On the other hand, 
moving the zeros inside the unit circle will trade 
noise and tones for a wider input range; when all 
zeros are very close to the origin, the modulators may 
even become globally stable at the sacrifice of its 
noise-shaping ability. 

Remark 3. Constraint (ii) in Proposition 1 specifies 
the maximum allowable input level of the modulator. 
However, experience shows that the constraint (ii) is 
over-restrictive; its estimate of the stable input level 
is often too conservative to have any practical use. 
Today, a reliable estimate of stable input level must 
still rely on the numerical simulation. 

Remark 4. The input level constraint (ii) implies that 
employing more quantization levels and smaller 
quantization step ∆  will increase the allowed input 
level, and thereby allow the noise-shaping function 
to have more dramatic attenuation in the wider 
frequency band. 

Remark 5. The gain of W does not affect the stability 
and performance of the modulator. This fact can be 
shown by substituting kW(z) for W(z) in the 
derivation of Sec. 2. This substitution yields an 
identical feedback modulation with the same output 
y. Also, the magnitude of E will change in the same 
proportion of the change of the gain of W, thus 
making the noise term in (2) unchanged.   
 

 

4   Modulator Synthesis 
The noise-shaping function W

--1 is critical to both the 
stability and performance of the modulator, directly 
influencing the allowed maximum input level and 
achievable peak signal-to-noise-plus-distortion ratio 
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(SNDR) of the modulator. According to the previous 
analysis, noise-shaping function W

--1 is chosen to 
satisfy the following conditions, 

� The poles of W
--1 are placed within the unit disk 

|z|<1 for stability (condition (i) in Proposition 1). 
� The zeros of W

--1 are optimally spread throughout 
the signal band to achieve maximum in-band 
noise attenuation. 

A simple choice for W
--1  is an elliptic filter. Since 

the elliptic filter is stable and has its zeros optimally 
placed on the unit circle to achieve a steep transition 
and high stopband attenuation, the above two design 
requirements are readily met. As shown in Fig. 4, an 
elliptic filter is specified by its cutoff frequency fc (or 
two cutoff frequencies for a bandpass or bandstop 
filter), passband ripple Rp, and stopband attenuation 
Rs. The cutoff frequency is at the edge of the 
passband. Between the passband and stopband is the 
transition band. In order to achieve uniform 
attenuation within the modulator bandwidth, the 
cutoff frequency must be chosen large enough so that 
the filter stopband will cover the entire signal band. 
For an elliptic filter with larger Rs and smaller Rp, 
the cutoff frequency should be chosen larger to attain 
the same stopband, because the transition band will 
be wider with a larger value of stopband attenuation 
and a smaller value of passband ripple. 

 

 

                

Fig. 4. Characteristic of a highpass elliptic filter. 
 
 

The following examples provide an illustration of 
the design method. If the noise-shaping function is 
designed, the modulator can be simulated or 
implemented in the topology of Fig. 2 or 3.  
 
Example 1 (Wideband 4-Bit Modulator Design) A 
4-bit lowpass sigma-delta modulator that samples at 
96 MHz is designed to convert signals of frequencies 
up to 6 MHz.  The noise-shaping function W

--1  is 
chosen as a seventh-order highpass elliptic filter of 
parameters fc=0.2031, Rp=1, and Rs=90. The 
numerator and denominator of the elliptic filter are 
obtained by the following MATLAB codes, 

% Let Num & Den be the coefficient vectors of  
% the numerator and denominator of W^-1(z).  
 [Num,Den]=ellip(7,Rp,Rs,fc,'high'); 

% Set the leading coefficient of Num equal to 1. 

Num=Num/Num(1); 

 
The resulting modulator is simulated with a 100kHz 
sinewave as a test input. According to simulations, 
the maximum stable input amplitude is 0.55. Figure 5 
displays the output spectrum of the modulator at the 
input amplitude of 0.55, and also a plot of the 
magnitude response of the noise-shaping function 
W

--1. The output spectrum reports an isolated tone at 
100 kHz and the noise spectrum following the shape 
of the magnitude response of W

--1. An attenuation of 
more than 90 dB within the signal bandwidth is 
achieved, resulting in an SNDR is 106 dB and an 
effective resolution of 17 bits. The characteristics of 
the modulator are summarized in Table 1.  
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Fig. 5. Output spectrum (black) and ||

1−
W  (gray). 

 
 

Table 1  Seventh-order lowpass modulator   
Sampling rate                                                      96 MHz 
Bandwidth                                                            6 MHz 
Test input frequency                                          100 kHz 
Peak SNDR                                                          106 dB 
Maximum stable input level                                     0.55 

 
 
Example 2 (Bandpass 1-Bit Modulator Design) This 
example designs a single-bit bandpass sigma-delta 
modulator for the conversion of 10.7MHz signals 
with a 200kHz bandwidth, at a sampling rate of 40 
MHz. The noise-shaping function of the modulator is 
designed to be a sixth-order bandstop elliptic filter 
with parameters f1=0.475, f2=0.594, Rp=1, and 
Rs=80, having the numerator and denominator given 
by,   

[Num,Den]=ellip(3,Rp,Rs,[f1 f2],'stop'); 
Num=Num/Num(1);  

 

0 dB 

fc 

-Rp dB 

-Rs dB 
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The modulator is simulated with a 10.7MHz 
sinewave as a test input. Simulations reveal that the 
modulator achieves a maximum SNDR of 101.7 dB 
and the maximum stable input amplitude is 0.67. 
Figure 6 plots the output spectrum of the modulator. 
Again, the noise spectrum follows the shape of | W

--1| 
as expected. Table 2 lists the characteristics and 
performance. 
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Fig. 6. Output spectrum (black) and ||

1−
W  (gray). 

 
 

Table 2  Sixth-order bandpass modulator   
Sampling rate                                                     40 MHz 
Center frequency                                             10.7 MHz 
Bandwidth                                                          200 kHz 
Peak SNDR                                                       101.7 dB 
Maximum stable input level                                     0.67 

 
 

5   Conclusion 
Sigma-delta modulators are synthesized with elliptic 
noise-shaping functions characterized by high 
in-band noise attenuation. The synthesis method is 
generally applicable to lowpass and bandpass 
sigma-delta modulators of arbitrary order. It is shown 
that this simple and effective synthesis method 
together with the exact stability and performance 
analysis takes the modulator performance toward its 
limit. 
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