
An Extended LBG Algorithm for Constructing
 Universal Image Encoders

Chuanfeng Lv and Qiangfu Zhao

The University of Aizu
Aizuwakamatsu, Japan 965-8580

Abstract: - In recent years, principal component analysis (PCA) has attracted great attention in image
compression. However, since the compressed image data include both the transformation matrix (the
eigenvectors) and the transformed coefficients, PCA cannot produce the same performance as DCT (discrete
Cosine transform) in respect of compression ratio. In using DCT, we need only to preserve the coefficients after
transformation, because the transformation matrix is universal in the sense that it can be used to compress all
images. To solve this problem we proposed k-PCA which is a potential universal image encoder. To increase the
approximation ability of k-PCA, we propose an extended LBG (e-LBG) algorithm in this paper. The basic idea
of the e-LBG algorithm is to improve the k-PCA iteratively using the training data. Experimental results show
that the proposed approach is very effective, although the computing time is slightly increased.

Key-Words: - Image compression, PCA, vector quantization, k-PCA, universal encoder

1 Introduction
So far many techniques have been proposed for
image compression. These techniques can be roughly
divided into two categories: predictive approaches
and transformational ones. In brief, predictive
approaches like differential pulse code modulation
(DPCM) and vector quantization (VQ) try to predict
a pixel or a block of pixels based on known data
(already observed or previously stored). Usually,
only local prediction is considered. For example, in
DPCM, good prediction can be made even if the
predictor is very simple because neighboring pixels
are often highly correlated. In VQ, a block of pixels
can be predicted very well using the nearest code
word.
 Transformational approaches project the data into
a domain which requires fewer parameters for data
representation. Principal component analysis (PCA)
is known as the optimal linear transformation for this
purpose. Compared with VQ which approximates
each point in the problem space using a different code
word, PCA approximates all points using the linear
combinations of the same set of basis vectors. Thus,
we may consider VQ and PCA as two extreme cases.
VQ is an extremely local approach which
approximates each point using only one point (the
nearest code word), while PCA is an extremely
global approach which approximates all points using
the same set of basis vectors.
 So far PCA has been successfully adopted in
signal processing, image processing, system control
theory, communication, pattern recognition, and so

on. PCA can be used to compress the dimensionality
of the problem space. PCA achieves compression
through discarding the principle components with
small eigenvalues. However, since the compressed
data must include both the transformation matrix (the
eigenvectors) and the transformed coefficients, PCA
cannot produce high compression ratio.
 Another transformation for image compression is
DCT (Discrete Cosine Transform). Although DCT is
not optimal, it is one of the most popular transforms,
and has been used and studied extensively. The
important feature of DCT is that it takes correlated
input data and concentrates its energy in just the first
few transformed coefficients. The advantage of using
DCT is that we need only to preserve the transformed
coefficients, since the transformation matrix is
universal in the sense that it can be used to compress
all images.
 Clearly, a PCA encoder build from one image
cannot be used to compress all other images because
the eigenvectors obtained from one image cannot
approximate other images well. Actually, even if we
consider the same image, the PCA encoder usually
cannot approximate all image blocks equally well
using a fixed set of eigenvector vectors. It may
perform poorly in local regions which include edges
or noises.
 To increase the approximation ability, many
improved PCA approaches have been proposed in the
literature [7], [8]. The basic idea of these approaches
is to train a number of PCAs which can adapt
different image blocks with distinct characteristics.
Though these algorithms can improve conventional

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.251-256)

PCA in some extend, they are very time consuming
and cannot be used easily.
 Currently, we proposed a new approach called
k-PCA which is a combination of VQ and PCA [10].
The basic idea is to divide the problem space into k
clusters (sub-spaces) using VQ, and then find a set of
eigenvectors using PCA for each cluster. The point is
that if the training data contain enough information,
we can construct a set of eigenvectors which can be
used as a universal encoder to compress any input
image.

Clearly, the k-PCA obtained by just combining
VQ and PCA is not optimal. To improve the
approximation ability of k-PCA, we propose an
extended LBG (e-LBG) algorithm in this paper.
Similar to the LBG algorithm, the e-LBG
algorithm trains the k-PCA iteratively using the
training data. Experimental results show that the
e-LBG algorithm can produce much better k-PCA,
with a slightly more computing time.

 This paper is organized as follows: Section 2
provides a short review of VQ and PCA, and
introduces briefly the concept of MPC (mixture of
principle component). In Section 3, the k-PCA
approach is first introduced, and then the e-LBG
algorithm is proposed. The proposed algorithm is
verified through experiments in Section 4. Section 5
is the conclusion.

2 Preliminaries
2.1 Vector Quantization (VQ)
VQ extends scalar quantization to higher dimensions.
This extension opens up a wide range of possibilities
and techniques not present in the scalar case. To
implement VQ, the first step is to initialize a
codebook based on the input data. The LBG
algorithm as a standard approach has been widely
adopted in many data compression system [1]. Its
main steps are as follows:

Step 0: Select a threshold value a (>0), set k=1�and
set the mean of all input data (the training data) as the
first code word: (1)

kC (here k=1).

Step 1: If k is smaller than the pre-specified codebook
size, continue; otherwise, terminate.

Step 2: Split each of the current code words into two
by duplicating it with a small noise.

Step 3: Based on the current codebook, calculate the
distortion, say e0. For each code word, find all the
input data which satisfy:

),(min),(jmjim CBdCBd = (1)

where)],1[(PmBm ∈ is the m-th input datum, and P
is the number of input data.

Step 4: Re-calculate each code word as the mean of
the input data found in the last step. Based on the new
code word, calculate the reconstructed distortion say
e1. If e0-e1<a then go to step 1; else go to step 3.

The distortion is often defined as the mean
squared error (MSE) given by

2

1

1 ∑
=

−=
P

m
mm CB

P
MSE (2)

where Cm is the nearest code word for the m-th block
Bm. and is the Euclidean distance between two
vectors. The distortion can also be defined as the
peak signal to noise ratio (PSNR) as follows:

(dB) log10
2

max
10 MSE

fPSNR = (3)

where maxf is the maximum value of the image. For
a gray image with eight bits per pixel, maxf is 255.
 After building the codebook, the coding
procedure is very simple. For each input datum, find
the nearest code word in the codebook. The index of
the code word will be the code of this datum. For
decoding, iteratively read in the index stream first,
substitute each index with the code word, and put it to
the image in order.

VQ is a piece-wise-linear approach. It
approximates each point locally. It is locally linear
but globally non-linear. It uses only one code word
for each input vector. In addition, VQ is a pure
discrete representation of the data, and thus can
achieve high compression ratio.

 There are mainly two problems in using VQ. The
first one is the so called trade off relation between the
compression ratio (Cr) and the fidelity. For example,
in order to improve Cr, the codebook size needs to be
reduced but the fidelity will be decreased. To resolve
this problem, we have proposed an iterated function
system (IFS) based algorithm in [2], [3]. The second
shortage of VQ is the computational cost for building
the codebook, which has become a bottleneck for
applying VQ. This is actually one of the major
research topics for improving VQ.

2.2 Principal Components Analysis (PCA)
PCA, also known as Karhunen-Loève transformation
in communication theory, can maximize the
decreasing rate of the variance of the input data,

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.251-256)

through resolving the eigenvalue problem:
qRq λ= (4)

where R is the correlation matrix of the input data, λ
is the eigenvalue of R, and q is the eigenvector. If the
problem space is N-dimensional, we can have N
possible solutions for the vector q. The principal
components can be defined as follows:

Njqxa jj ,...,2,1 ,, =>=< (5)

where ja denotes the projections of x onto the j-th
principal direction. To reconstruct the original data,
we simply have

j

N

j
jqax ∑

=

=
1

 (6)

Usually, some of the eigenvalues are very small, and
the corresponding eigenvectors can be omitted in Eq.
(6). This is the basic idea for data compression based
on PCA. The more eigenvectors we omit, the higher
the compression ratio will be.
 In 1982, Oja [3] proposed a self organized neural
network with constrained Hebbian learning rule that
can extract the principal component from stationary
input data. Thereafter, there has been increasing
interest in the study of connections between PCA and
neural networks. A symmetrical multilayer
perceptron (MLP) neural network [4] with the back
propagation algorithm in supervised autoassociative,
have been shown closely connected to PCA. Sanger’s
generalized Hebbian algorithm (GHA) [5] which
extends Oja’s single model to M principal
components. Kung and Diamantara [6] proposed an
adaptive principal component extraction (APEX)
model, in which the output of the m-th principal
component can be calculated based on the previous
m-1 components.

2.2 Mixture of Principle Components (MPC)
 By implementing PCA we know that, it is one image
vs. one transform method, since for each image we
should build one particular transformation matrix
consisting of eigenvectors. To reconstruct the image,
not only the transformed coefficients but also the
transform matrix is required. Furthermore PCA is a
linear approach; it cannot approximate all areas of the
image equally well. In other words, one PCA cannot
simultaneously capture the features of all regions.
 To resolve the above problems, MPC has been
studied [7], [8]. The procedure is as follows: before
PCA, divide the problem space into a number of
sub-spaces, and then find a set of eigenvectors for
each sub-space. If enough training data are given,
MPC can construct a system which maintains a good
generality. It is interesting to note that an MPC can
actually be used as a universal encoder if the

generalization ability is high enough. In this case, we
do not have to preserve the MPC parameters in the
compressed data. Only the transformed coefficients
(the output of the system) for each input image block
are needed.

So far researches have been focused on how to
divide the problem space efficiently. In [7], Donny
proposed an optimally adaptive transform coding
method. It is composed of a number of GHA neural
networks. Fig. 1 illustrates how the appropriate
GHA is selected to learn from the current input
vector. The training algorithm is as follows:

Step 1: Initialize (at random) K transformation
matrices KWWW ,,, 21 Λ , where jW is the weight
matrix of the j-th GHA network.

Step 2: For each training input vector x, classify it to
the i-th sub-space, if

xPxP j

K

ji max
1=

= (7)

where i
T

ii WWP = .
Update the weights according to the following rule:

),(old
i

old
i

new
i WxZWW α+= (8)

Where � is the learning rate and Z is a GHA learning
rule which converges to the principal components.

Step 3: Iteratively implement the above training
procedure until the weights are stable.

Figure 1: Basic structure of the MPC

 In [7], the training parameters were given as
follows: 1) the number of sub-spaces is 64 and 2) the
number of training iterations is 80,000. Note that to
use the MPC as a universal encoder; we must train it
using many data. The above algorithm is not good
enough because it is too time consuming. In paper
[8], several methods were proposed to speed up the
training process and decrease the distortion. These
methods include growth by class insertion, growth by

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.251-256)

components addition and tree structured network.
The essential issue is that the convergence speed of
GHA is very slow.

3 A New Universal Encoder: k-PCA
3.1 The concept of k-PCA
As can be seen from the pervious discussion, the
computational cost of the MPC is very high. One
reason is that the weight matrices to be updated are of
high dimensionality, and another reason is that the
convergent speed of the GHAs is slow. To solve
these problems, we propose to divide the problem
space using VQ. First, the dimension of the vectors
(code words) to be updated is much smaller. Second,
the LBG algorithm is much faster than the algorithm
given in the last section. Third, for each cluster, we
do not use a GHA, but a PCA, and to get a PCA is
much faster. The encoding and decoding procedure
of the proposed method is given in Fig.2.

Step 1: Divide the input image into nn× small
blocks (n=8 here). For the entire input data, find an
8-D PCA encoder. By so doing we can reduce the
dimension of the problem space from 64 to 8.

Step 2: Find a codebook with k (k=64 in our
experiments) code words using the LBG algorithm,
for the 8-D vectors obtained in the last step, and
record the index of each input vector.

Step 3: Based on the codebook, we can divide the
problem space into k clusters. For each cluster, we
can find an M-D (M=4 in this paper) PCA encoder.

Step 4: For each input vector, compress it to an 8-D
vector using the PCA encoder found in Step 1, then
find the index of the nearest code word found in Step
2, and finally compress it to an M-D vector. The M-D
vector along with the index of the nearest code word
is used as the code of the input vector.

 The purpose of Step 1 is to reduce the
computational cost of VQ. Through experiments we
have found that an 8-D PCA encoder can represent
the original image very well. The codebook obtained
based on the 8-D vectors performs almost the same as
that obtained from the original 64-D vectors. In this
paper, we call the above encoding method the k-PCA.
Note that if we train the k-PCA using enough data,
we can use it as a universal encoder, and do not have
to include the eigenvectors into the compressed data.
Thus, the compression ratio can be increased.
 The reconstruction (decoding) procedure is as

follows:
Step 1: Read in the codes one by one.

Step 2: Find the basis vectors for the cluster specified
by the index, and transform the M-D vector back to
the 8-D vector.

Step 3: Transform the 8-D vector back to nn× -D
vector, and put it to the image in order.

8D PCA

8D VQ

PCs

k-PCA

8D VQ’

k-PCA’

Input X

Output X’

Encode

Decode

Figure 2: The flow-chat of the proposed method

3.2 The e-LBG Algorithm
From the process for constructing the k-PCA we can
see that to obtain a k-PCA that generalizes well, it is
important to partition the input data space properly.
Although the VQ based k-PCA is better than other
existing adaptive PCA approaches, it is not optimal.
Actually, the decision boundaries formed by the k
cluster centers are different from those formed by the
k PCAs. As a result, many data cannot be encoded
using the best PCA.

To improve the approximation ability of k-PCA,
we can conduct a post training process based on the
LBG algorithm [1]. We call this approach the
extended LBG (e-LBG) in this paper. The basic
idea is as follows. After partitioning the problem
space by VQ, we have k set of eigenvectors. For
each set of eigenvectors, we can find the set of
training data that can be approximated best by the
eigenvectors. The eigenvectors can be rebuilt using
these data. This process can continue until the
fidelity of the reconstructed image does not change
significantly. This process is given as follows:

Step 1: For each input data (training data) find the
closest eigenvectors which can produce smallest
error between original and reconstructed data, mark it

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.251-256)

with the index of the eigenvectors.

Step 2: For each set of eigenvectors find all input data
marked by its index, using these input data construct
a new set of eigenvectors and replace the old one.

Step 3: Evaluate the error between the original and
reconstructed image. Compare the error with the one
in last iteration.

Step 4: If there is no significant improvement,
terminate; otherwise, return to Step 1.

4 Experimental Results
 To verify the proposed method, we conducted
experiments with ten popular images. The size of the
images is the same, and is 512*512 pixels. There are
256 gray levels. So the uncompressed size of each
picture is 256 kB. In the first set of experiments, we
constructed the k-PCA using one image and tested
the performance using the same image. The block
size n is 8, the codebook size k is 64, and the number
of basis vectors M is 4. Each principal component
was quantized to 8bits.

The MSE (mean squared error) of the k-PCAs
obtained by different methods are shown in Table.1,
where “training time” is the number of iterations
used by e-LBG for improving the k-PCA. From
these results we can see that in this case the k-PCA
after e-LBG learning is significantly better than the
original one. The compression ratio in this case is
3.084 (Since the transformation matrix as well as
the transformed coefficients are all counted, the
compression ratio is quite low). For comparison
some experimental results from [8] are also given
in Table 2, which contains only results for the
image Lena. In Table 1 and Table 2, the parameters
n, k and M are the same. Clearly, the k-PCA is
always better than the results given in Table 2.

To confirm the generalization ability of k-PCA,
which is very important if we use it as a universal
encoder, we conducted another set of experiments.
Specifically, we used 9 of the 10 images for
training, and test the resulted encoder using the
remaining image. This method is often called
cross-validation in machine learning. The basic
idea is that if the training samples are enough, good
performance for the test image can be expected.

The MSE of 5-D PCA (PCA using 5 principle
components) for training and test data are given in
Table 3. The MSE of k-PCA before e-LBG
learning is given in Table 4. The MSE of k-PCA
after 10 iterations of learning is given in Table 5,

and that after convergence is given in Table 6.
These results proved that the e-LBG algorithm can
improve the generalization ability in call cases.
Table 5 shows that the e-LBG algorithm converges
very quickly. Usually, 10 iterations are enough.

Table 1: MSE of the k-PCAs for the same image

Name
VQ

based
k-PCA

e-LBG
based

k-PCA

Training
time

Airport 140.2717 117.6078 28
Barbara 113.0356 79.3661 25

Boat 84.0778 66.0906 24
Elaine 37.7442 31.1575 35
F16 56.6605 43.7869 46
Lena 32.6923 25.2609 27
Man 116.6767 93.5214 28

Mandrill 331.0888 287.4656 22
Peppers 40.1849 30.7885 27
Zelda 18.7482 14.2024 33

Table 2: Results of existing methods

Results for Lena MSE PSNR
PCA 75.95 29.3
Growth MPC 57.1 30.06
Tree MPC 57.0 30.05
Standard MPC 84.9 28.8

Table 3: MSE of 5-D PCA (compression ratio is
12.8)

Name Training Test
Airport 161.0203 236.4607
Barbara 157.1405 271.8593

Boat 170.2529 154.6585
Elaine 180.8336 58.1127
F16 172.8723 129.9564
Lena 180.3825 62.4814
Man 166.4856 188.0179

Mandrill 134.1961 478.4251
Peppers 177.0497 92.9295
Zelda 183.8503 30.6501

Notice that we are trying to train a set of

universal eigenvectors that are good for any image.
The BPP (bit per pixel) is only calculated in terms
of the transformed coefficients. From the test
results, we can see that the proposed method has
improved the fidelity of decoded image in all cases,
with a bit increase in cost for training. Of course, if
the k-PCA is constructed off-line, this additional
cost can be ignored for encoding.

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.251-256)

Table 4: MSE of k-PCA before e-LBG learning
(compression ratio is 13.47)

Name Training Test
Airport 115.2744 175.9509
Barbara 112.6063 273.1898

Boat 122.3998 106.9265
Elaine 129.3118 49.0923
F16 124.9564 79.9465
Lena 130.3223 46.5897
Man 112.6063 133.275

Mandrill 92.0624 378.5847
Peppers 127.66 58.0644
Zelda 131.9188 23.28

Table 5: MSE of k-PCA after 10 iterations of learning

Name Training Test
Airport 94.1622 160.4762
Barbara 96.8948 227.2377

Boat 101.0106 98.098
Elaine 106.0526 45.3273
F16 103.817 73.1064
Lena 107.7527 40.4854
Man 98.3824 122.5518

Mandrill 73.622 361.5066
Peppers 106.4611 49.8636
Zelda 108.5873 21.7958

Table 6: MSE of k-PCA after convergence

Name Training Test Times
Airport 92.9481 160.7153 74
Barbara 95.3935 224.536 68

Boat 98.6786 97.8666 110
Elaine 104.3286 44.9049 108
F16 101.5062 73.2422 75
Lena 106.1242 40.1189 81
Man 96.4446 122.4422 91

Mandrill 71.1037 361.1015 75
Peppers 105.4487 49.1948 70
Zelda 107.139 21.7178 161

5 Conclusions
In this paper we have focused our attention on how to
improve the performance of previously proposed
k-PCA image compression approach. An extended
LBG (e-LBG) algorithm has been proposed. The
basic idea of the e-LBG algorithm is to improve the
k-PCA iteratively using the training data.
Experimental results have shown that the proposed
approach is very effective, although the computing
time is slightly increased.

References:
[1] Y. Linde, A. Buzo and R. M. Gray, "An
Algorithm for Vector Quantization," IEEE Trans. On
Communications, Vol. 28, No.1, pp.84-95, 1980.
[2] C. F. Lv and Q. Zhao, "Fractal Based VQ Image
Compression Algorithm," Proc. of the 66th National
Convention of IPSJ, Japan, 2004.
[3] C. F. Lv, "IFS+VQ: A new method for Image
Compression," Master Thesis, the University of Aizu,
Japan, 2004.
[4] E. Oja, "A simplified neuron model as a principal
component analyzer", J. Math. Biology 15, pp.
267-273, 1982.
[5] S. Carrato, Neural networks for image
compression, Neural Networks: Adv. and Appl. 2
ed., Gelenbe Pub,North-Holland, Amsterdam, 1992,
pp. 177-198.
[6] T. D. Sanger, "Optimal unsupervised learning in a
single-layer linear feedforward neural network",
Neural Networks 2, pp. 459-473, 1989.
[7] S. Y. Kung and K. I. Diamantaras, "A neural
network learning algorithm for adaptive principal
component extraction (APEX)", in Proc. IEEE Int.
Conf. Acoustics, Speech, and Signal Processing 90,
pp. 861-864, (Al-burqurque, NM), April 3-6 1990.
[8] R. D. Dony, "Adaptive Transform Coding of
Images Using a Mixture of Principal Components".
PhD thesis, McMaster University, Hamilton,
Ontario, Canada, July 1995.
[9] R. D. Dony, "A Comparison of Hebbian Learning
Methods for Image Compression using the Mixture
of Principal Components Network" Proceedings of
SPIE, v 3307, Applications of Artificial Neural
Networks in Image Processing III, pp. 64-75, 1998.
[10] C. F. Lv and Q. F. Zhao, “A simplified MPC for
image compression,” Proc. International Conference
on Computer and Information Technology, pp.
580-584, Shanghai, 2005.

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.251-256)

