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Abstract: - In recent years, principal component analysis (PCA) has attracted great attention in image 
compression. However, since the compressed image data include both the transformation matrix (the 
eigenvectors) and the transformed coefficients, PCA cannot produce the same performance as DCT (discrete 
Cosine transform) in respect of compression ratio. In using DCT, we need only to preserve the coefficients after 
transformation, because the transformation matrix is universal in the sense that it can be used to compress all 
images. To solve this problem we proposed k-PCA which is a potential universal image encoder. To increase the 
approximation ability of k-PCA, we propose an extended LBG (e-LBG) algorithm in this paper. The basic idea 
of the e-LBG algorithm is to improve the k-PCA iteratively using the training data. Experimental results show 
that the proposed approach is very effective, although the computing time is slightly increased. 
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1   Introduction 
So far many techniques have been proposed for 
image compression. These techniques can be roughly 
divided into two categories: predictive approaches 
and transformational ones. In brief, predictive 
approaches like differential pulse code modulation 
(DPCM) and vector quantization (VQ) try to predict 
a pixel or a block of pixels based on known data 
(already observed or previously stored). Usually, 
only local prediction is considered. For example, in 
DPCM, good prediction can be made even if the 
predictor is very simple because neighboring pixels 
are often highly correlated. In VQ, a block of pixels 
can be predicted very well using the nearest code 
word. 
     Transformational approaches project the data into 
a domain which requires fewer parameters for data 
representation. Principal component analysis (PCA) 
is known as the optimal linear transformation for this 
purpose. Compared with VQ which approximates 
each point in the problem space using a different code 
word, PCA approximates all points using the linear 
combinations of the same set of basis vectors.  Thus, 
we may consider VQ and PCA as two extreme cases. 
VQ is an extremely local approach which 
approximates each point using only one point (the 
nearest code word), while PCA is an extremely 
global approach which approximates all points using 
the same set of basis vectors.  
     So far PCA has been successfully adopted in 
signal processing, image processing, system control 
theory, communication, pattern recognition, and so 

on. PCA can be used to compress the dimensionality 
of the problem space. PCA achieves compression 
through discarding the principle components with 
small eigenvalues. However, since the compressed 
data must include both the transformation matrix (the 
eigenvectors) and the transformed coefficients, PCA 
cannot produce high compression ratio.  
     Another transformation for image compression is 
DCT (Discrete Cosine Transform). Although DCT is 
not optimal, it is one of the most popular transforms, 
and has been used and studied extensively. The 
important feature of DCT is that it takes correlated 
input data and concentrates its energy in just the first 
few transformed coefficients. The advantage of using 
DCT is that we need only to preserve the transformed 
coefficients, since the transformation matrix is 
universal in the sense that it can be used to compress 
all images.  
     Clearly, a PCA encoder build from one image 
cannot be used to compress all other images because 
the eigenvectors obtained from one image cannot 
approximate other images well. Actually, even if we 
consider the same image, the PCA encoder usually 
cannot approximate all image blocks equally well 
using a fixed set of eigenvector vectors. It may 
perform poorly in local regions which include edges 
or noises.  
     To increase the approximation ability, many 
improved PCA approaches have been proposed in the 
literature [7], [8]. The basic idea of these approaches 
is to train a number of PCAs which can adapt 
different image blocks with distinct characteristics. 
Though these algorithms can improve conventional 
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PCA in some extend, they are very time consuming 
and cannot be used easily. 
 Currently, we proposed a new approach called 
k-PCA which is a combination of VQ and PCA [10]. 
The basic idea is to divide the problem space into k 
clusters (sub-spaces) using VQ, and then find a set of 
eigenvectors using PCA for each cluster. The point is 
that if the training data contain enough information, 
we can construct a set of eigenvectors which can be 
used as a universal encoder to compress any input 
image.  

Clearly, the k-PCA obtained by just combining 
VQ and PCA is not optimal. To improve the 
approximation ability of k-PCA, we propose an 
extended LBG (e-LBG) algorithm in this paper.  
Similar to the LBG algorithm, the e-LBG 
algorithm trains the k-PCA iteratively using the 
training data. Experimental results show that the 
e-LBG algorithm can produce much better k-PCA, 
with a slightly more computing time. 

     This paper is organized as follows: Section 2 
provides a short review of VQ and PCA, and 
introduces briefly the concept of MPC (mixture of 
principle component). In Section 3, the k-PCA 
approach is first introduced, and then the e-LBG 
algorithm is proposed. The proposed algorithm is 
verified through experiments in Section 4. Section 5 
is the conclusion. 
 
 
2   Preliminaries 
2.1 Vector Quantization (VQ) 
VQ extends scalar quantization to higher dimensions. 
This extension opens up a wide range of possibilities 
and techniques not present in the scalar case. To 
implement VQ, the first step is to initialize a 
codebook based on the input data. The LBG 
algorithm as a standard approach has been widely 
adopted in many data compression system [1]. Its 
main steps are as follows: 
 
Step 0: Select a threshold value a (>0), set k=1�and 
set the mean of all input data (the training data) as the 
first code word:  (1)

kC  (here k=1).  
 
Step 1: If k is smaller than the pre-specified codebook 
size, continue; otherwise, terminate. 
 
Step 2: Split each of the current code words into two 
by duplicating it with a small noise. 
 
Step 3: Based on the current codebook, calculate the 
distortion, say e0. For each code word, find all the 
input data which satisfy: 

),( min),( jmjim CBdCBd =                             (1) 

where )],1[( PmBm ∈ is the m-th input datum, and P 
is the number of input data.  
 
Step 4: Re-calculate each code word as the mean of 
the input data found in the last step. Based on the new 
code word, calculate the reconstructed distortion say 
e1.  If e0-e1<a then go to step 1; else go to step 3.  
 

The distortion is often defined as the mean 
squared error (MSE) given by 
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where Cm is the nearest code word for the m-th block 
Bm. and  is the Euclidean distance between two 
vectors. The distortion can also be defined as the 
peak signal to noise ratio (PSNR) as follows: 

(dB)  log10
2

max
10 MSE

fPSNR =                                (3) 

where maxf  is the maximum value of the image. For 
a gray image with eight bits per pixel, maxf is 255. 
     After building the codebook, the coding 
procedure is very simple. For each input datum, find 
the nearest code word in the codebook. The index of 
the code word will be the code of this datum. For 
decoding, iteratively read in the index stream first, 
substitute each index with the code word, and put it to 
the image in order. 

VQ is a piece-wise-linear approach. It 
approximates each point locally. It is locally linear 
but globally non-linear. It uses only one code word 
for each input vector. In addition, VQ is a pure 
discrete representation of the data, and thus can 
achieve high compression ratio.  

   There are mainly two problems in using VQ. The 
first one is the so called trade off relation between the 
compression ratio (Cr) and the fidelity. For example, 
in order to improve Cr, the codebook size needs to be 
reduced but the fidelity will be decreased. To resolve 
this problem, we have proposed an iterated function 
system (IFS) based algorithm in [2], [3]. The second 
shortage of VQ is the computational cost for building 
the codebook, which has become a bottleneck for 
applying VQ. This is actually one of the major 
research topics for improving VQ. 
 
2.2 Principal Components Analysis (PCA) 
PCA, also known as Karhunen-Loève transformation 
in communication theory, can maximize the 
decreasing rate of the variance of the input data, 
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through resolving the eigenvalue problem:  
qRq λ=                                                                   (4) 

where R is the correlation matrix of the input data, λ 
is the eigenvalue of R, and q is the eigenvector. If the 
problem space is N-dimensional, we can have N 
possible solutions for the vector q. The principal 
components can be defined as follows: 

Njqxa jj ,...,2,1  ,, =>=<                                   (5) 

where ja denotes the projections of x onto the j-th 
principal direction. To reconstruct the original data, 
we simply have 

j

N

j
jqax ∑

=

=
1

                                                                (6) 

Usually, some of the eigenvalues are very small, and 
the corresponding eigenvectors can be omitted in Eq. 
(6). This is the basic idea for data compression based 
on PCA. The more eigenvectors we omit, the higher 
the compression ratio will be. 
     In 1982, Oja [3] proposed a self organized neural 
network with constrained Hebbian learning rule that 
can extract the principal component from stationary 
input data. Thereafter, there has been increasing 
interest in the study of connections between PCA and 
neural networks. A symmetrical multilayer 
perceptron (MLP) neural network [4] with the back 
propagation algorithm in supervised autoassociative, 
have been shown closely connected to PCA. Sanger’s 
generalized Hebbian algorithm (GHA) [5] which 
extends Oja’s single model to M principal 
components. Kung and Diamantara [6] proposed an 
adaptive principal component extraction (APEX) 
model, in which the output of the m-th principal 
component can be calculated based on the previous 
m-1 components. 
 
2.2 Mixture of Principle Components (MPC) 
 By implementing PCA we know that, it is one image 
vs. one transform method, since for each image we 
should build one particular transformation matrix 
consisting of eigenvectors. To reconstruct the image, 
not only the transformed coefficients but also the 
transform matrix is required. Furthermore PCA is a 
linear approach; it cannot approximate all areas of the 
image equally well. In other words, one PCA cannot 
simultaneously capture the features of all regions. 
     To resolve the above problems, MPC has been 
studied [7], [8]. The procedure is as follows: before 
PCA, divide the problem space into a number of 
sub-spaces, and then find a set of eigenvectors for 
each sub-space. If enough training data are given, 
MPC can construct a system which maintains a good 
generality. It is interesting to note that an MPC can 
actually be used as a universal encoder if the 

generalization ability is high enough. In this case, we 
do not have to preserve the MPC parameters in the 
compressed data. Only the transformed coefficients 
(the output of the system) for each input image block 
are needed. 

So far researches have been focused on how to 
divide the problem space efficiently. In [7], Donny 
proposed an optimally adaptive transform coding 
method. It is composed of a number of GHA neural 
networks. Fig. 1 illustrates how the appropriate 
GHA is selected to learn from the current input 
vector. The training algorithm is as follows: 

 
Step 1: Initialize (at random) K transformation 
matrices KWWW ,,, 21 Λ , where jW is the weight 
matrix of the j-th GHA network. 
 
Step 2: For each training input vector x, classify it to 
the i-th sub-space, if 

xPxP j

K

ji  max
1=

=                                                       (7) 

where i
T

ii WWP = . 
Update the weights according to the following rule:  

),( old
i

old
i

new
i WxZWW α+=                                  (8) 

Where � is the learning rate and Z is a GHA learning 
rule which converges to the principal components. 
 
Step 3: Iteratively implement the above training 
procedure until the weights are stable. 
 

 
Figure 1: Basic structure of the MPC 
 
     In [7], the training parameters were given as 
follows: 1) the number of sub-spaces is 64 and 2) the 
number of training iterations is 80,000. Note that to 
use the MPC as a universal encoder; we must train it 
using many data. The above algorithm is not good 
enough because it is too time consuming. In paper 
[8], several methods were proposed to speed up the 
training process and decrease the distortion. These 
methods include growth by class insertion, growth by 
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components addition and tree structured network. 
The essential issue is that the convergence speed of 
GHA is very slow. 
 
 
3   A New Universal Encoder: k-PCA 
3.1 The concept of k-PCA 
As can be seen from the pervious discussion, the 
computational cost of the MPC is very high. One 
reason is that the weight matrices to be updated are of 
high dimensionality, and another reason is that the 
convergent speed of the GHAs is slow. To solve 
these problems, we propose to divide the problem 
space using VQ. First, the dimension of the vectors 
(code words) to be updated is much smaller. Second, 
the LBG algorithm is much faster than the algorithm 
given in the last section. Third, for each cluster, we 
do not use a GHA, but a PCA, and to get a PCA is 
much faster. The encoding and decoding procedure 
of the proposed method is given in Fig.2. 
 
Step 1: Divide the input image into nn×  small 
blocks (n=8 here). For the entire input data, find an 
8-D PCA encoder. By so doing we can reduce the 
dimension of the problem space from 64 to 8.   
 
Step 2: Find a codebook with k (k=64 in our 
experiments) code words using the LBG algorithm, 
for the 8-D vectors obtained in the last step, and 
record the index of each input vector. 
 
Step 3: Based on the codebook, we can divide the 
problem space into k clusters. For each cluster, we 
can find an M-D (M=4 in this paper) PCA encoder. 
 
Step 4: For each input vector, compress it to an 8-D 
vector using the PCA encoder found in Step 1, then 
find the index of the nearest code word found in Step 
2, and finally compress it to an M-D vector. The M-D 
vector along with the index of the nearest code word 
is used as the code of the input vector. 
 
     The purpose of Step 1 is to reduce the 
computational cost of VQ. Through experiments we 
have found that an 8-D PCA encoder can represent 
the original image very well.  The codebook obtained 
based on the 8-D vectors performs almost the same as 
that obtained from the original 64-D vectors. In this 
paper, we call the above encoding method the k-PCA. 
Note that if we train the k-PCA using enough data, 
we can use it as a universal encoder, and do not have 
to include the eigenvectors into the compressed data. 
Thus, the compression ratio can be increased.  
     The reconstruction (decoding) procedure is as 

follows: 
Step 1: Read in the codes one by one. 
 
Step 2: Find the basis vectors for the cluster specified 
by the index, and transform the M-D vector back to 
the 8-D vector. 
 
Step 3: Transform the 8-D vector back to nn× -D 
vector, and put it to the image in order. 
 

8D PCA

8D VQ

PCs

k-PCA

8D VQ’

k-PCA’

Input X

Output X’

Encode

Decode

 
 

Figure 2: The flow-chat of the proposed method 
 
3.2 The e-LBG Algorithm 
From the process for constructing the k-PCA we can 
see that to obtain a k-PCA that generalizes well, it is 
important to partition the input data space properly. 
Although the VQ based k-PCA is better than other 
existing adaptive PCA approaches, it is not optimal. 
Actually, the decision boundaries formed by the k 
cluster centers are different from those formed by the 
k PCAs. As a result, many data cannot be encoded 
using the best PCA. 

To improve the approximation ability of k-PCA, 
we can conduct a post training process based on the 
LBG algorithm [1].  We call this approach the 
extended LBG (e-LBG) in this paper. The basic 
idea is as follows. After partitioning the problem 
space by VQ, we have k set of eigenvectors. For 
each set of eigenvectors, we can find the set of 
training data that can be approximated best by the 
eigenvectors. The eigenvectors can be rebuilt using 
these data. This process can continue until the 
fidelity of the reconstructed image does not change 
significantly. This process is given as follows: 

 
Step 1: For each input data (training data)  find the 
closest eigenvectors which can produce smallest 
error between original and reconstructed data, mark it 
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with the index of the eigenvectors.  
 
Step 2: For each set of eigenvectors find all input data 
marked by its index, using these input data construct 
a new set of eigenvectors and replace the old one. 
 
Step 3: Evaluate the error between the original and 
reconstructed image. Compare the error with the one 
in last iteration. 
 
Step 4: If there is no significant improvement, 
terminate; otherwise, return to Step 1. 
 
 
4 Experimental Results 
 To verify the proposed method, we conducted 
experiments with ten popular images. The size of the 
images is the same, and is 512*512 pixels. There are 
256 gray levels. So the uncompressed size of each 
picture is 256 kB. In the first set of experiments, we 
constructed the k-PCA using one image and tested 
the performance using the same image. The block 
size n is 8, the codebook size k is 64, and the number 
of basis vectors M is 4. Each principal component 
was quantized to 8bits.  

The MSE (mean squared error) of the k-PCAs 
obtained by different methods are shown in Table.1, 
where “training time” is the number of iterations 
used by e-LBG for improving the k-PCA. From 
these results we can see that in this case the k-PCA 
after e-LBG learning is significantly better than the 
original one. The compression ratio in this case is 
3.084 (Since the transformation matrix as well as 
the transformed coefficients are all counted, the 
compression ratio is quite low). For comparison 
some experimental results from [8] are also given 
in Table 2, which contains only results for the 
image Lena. In Table 1 and Table 2, the parameters 
n, k and M are the same. Clearly, the k-PCA is 
always better than the results given in Table 2. 

To confirm the generalization ability of k-PCA, 
which is very important if we use it as a universal 
encoder, we conducted another set of experiments. 
Specifically, we used 9 of the 10 images for 
training, and test the resulted encoder using the 
remaining image. This method is often called 
cross-validation in machine learning. The basic 
idea is that if the training samples are enough, good 
performance for the test image can be expected.  

The MSE of 5-D PCA (PCA using 5 principle 
components) for training and test data are given in 
Table 3. The MSE of k-PCA before e-LBG 
learning is given in Table 4. The MSE of k-PCA 
after 10 iterations of learning is given in Table 5, 

and that after convergence is given in Table 6. 
These results proved that the e-LBG algorithm can 
improve the generalization ability in call cases. 
Table 5 shows that the e-LBG algorithm converges 
very quickly.  Usually, 10 iterations are enough.  

 
Table 1: MSE of the k-PCAs for the same image 
 

Name 
VQ 

based  
k-PCA 

e-LBG 
based  

k-PCA 

Training 
time 

Airport 140.2717 117.6078 28 
Barbara 113.0356 79.3661 25 

Boat 84.0778 66.0906 24 
Elaine 37.7442 31.1575 35 
F16 56.6605 43.7869 46 
Lena 32.6923 25.2609 27 
Man 116.6767 93.5214 28 

Mandrill 331.0888 287.4656 22 
Peppers 40.1849 30.7885 27 
Zelda 18.7482 14.2024 33 

 

Table 2: Results of existing methods  
 

Results for Lena MSE PSNR 
PCA 75.95 29.3 
Growth MPC 57.1 30.06 
Tree MPC 57.0 30.05 
Standard MPC 84.9 28.8 
 

Table 3: MSE of 5-D PCA (compression ratio is 
12.8) 
 

Name Training Test 
Airport 161.0203 236.4607 
Barbara 157.1405 271.8593 

Boat 170.2529 154.6585 
Elaine 180.8336 58.1127 
F16 172.8723 129.9564 
Lena 180.3825 62.4814 
Man 166.4856 188.0179 

Mandrill 134.1961 478.4251 
Peppers 177.0497 92.9295 
Zelda 183.8503 30.6501 

 
Notice that we are trying to train a set of 

universal eigenvectors that are good for any image. 
The BPP (bit per pixel) is only calculated in terms 
of the transformed coefficients. From the test 
results, we can see that the proposed method has 
improved the fidelity of decoded image in all cases, 
with a bit increase in cost for training. Of course, if 
the k-PCA is constructed off-line, this additional 
cost can be ignored for encoding. 
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Table 4: MSE of k-PCA before e-LBG learning 
(compression ratio is 13.47) 
 

Name Training Test 
Airport 115.2744 175.9509 
Barbara 112.6063 273.1898 

Boat 122.3998 106.9265 
Elaine 129.3118 49.0923 
F16 124.9564 79.9465 
Lena 130.3223 46.5897 
Man 112.6063 133.275 

Mandrill 92.0624 378.5847 
Peppers 127.66 58.0644 
Zelda 131.9188 23.28 

 

Table 5: MSE of k-PCA after 10 iterations of learning 
 

Name  Training  Test 
Airport 94.1622 160.4762 
Barbara 96.8948 227.2377 

Boat 101.0106 98.098 
Elaine 106.0526 45.3273 
F16 103.817 73.1064 
Lena 107.7527 40.4854 
Man 98.3824 122.5518 

Mandrill 73.622 361.5066 
Peppers 106.4611 49.8636 
Zelda 108.5873 21.7958 

 

Table 6: MSE of k-PCA after convergence 
 

Name Training Test Times 
Airport 92.9481 160.7153 74 
Barbara 95.3935 224.536 68 

Boat 98.6786 97.8666 110 
Elaine 104.3286 44.9049 108 
F16 101.5062 73.2422 75 
Lena 106.1242 40.1189 81 
Man 96.4446 122.4422 91 

Mandrill 71.1037 361.1015 75 
Peppers 105.4487 49.1948 70 
Zelda 107.139 21.7178 161 

 
 
5 Conclusions 
In this paper we have focused our attention on how to 
improve the performance of previously proposed 
k-PCA image compression approach. An extended 
LBG (e-LBG) algorithm has been proposed. The 
basic idea of the e-LBG algorithm is to improve the 
k-PCA iteratively using the training data. 
Experimental results have shown that the proposed 
approach is very effective, although the computing 
time is slightly increased. 
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