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Abstract: - In this paper, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is 
proposed to blindly separate and deconvolve the convolutive combinations of digitally modulated signals in 
wireless communications.  This approach relies on the simple observation that if signals are independent in one 
domain, their corresponding components in a linearly transformed domain are also independent.  The proposed 
ICA-F lends itself to computationally efficient Fast Fourier Transform (FFT) implementation, which converts 
the convolutive combination in the time domain into multiple instantaneous combinations in the frequency 
domain.  Then, the natural-gradient Independent Component Analysis (ICA) algorithm is employed in each 
frequency bin to the separate frequency components of source signals.  The permutation and gain ambiguities 
associated with the ICA algorithm are successfully solved.  The ICA-F has lower computational complexity and 
faster convergence than the existing time-domain approach.  Simulation results confirm the effectiveness of the 
proposed ICA-F. 
 
Key-Words: - Blind Equalizer, Blind Source Separation, Constant Modulus Algorithm, Gain Ambiguity, 
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1   Introduction 
Blind Source Separation (BSS) is one of the most 
prominent research areas with numerous potential 
applications.  Independent Component Analysis 
(ICA) is the most widely used methodology to 
perform BSS.  In ICA, the source signals are 
extracted from the received signals, which are the 
unknown combinations of the source signals [1].  If 
the source signals are combined instantaneously, an 
instantaneous ICA algorithm can be directly 
employed to separate the received signals.  In 
numerous practical situations, such as digitally 
modulated signals traveling through 
frequency-selective, slow fading channels in wireless 
communications, the received signals are the 
convolutive combinations of the source signals.  
Many ICA approaches have been proposed to 
separate the convolutive combination, and they are 
classified into two approaches: the time-domain 
approach and the frequency-domain approach.  
     The first approach is the time-domain ICA 
approach [2].  This approach is theoretically sound 
and achieves good separation performance once it 
converges.  However, the time-domain ICA approach 
is computationally extensive since the adaptation 
includes convolution operations.  In addition, 
statistical dependencies between filter taps reduce the 

convergence speed since updating a filter tap 
influences adaptation of the ones succeeding it. 
     The second approach is the frequency-domain 
ICA approach [3-8].  In this approach, the 
convolutive combination in the time domain is 
converted into multiple instantaneous combinations 
in the frequency domain.  Then, these instantaneous 
combinations are individually separated by an 
instantaneous ICA algorithm.  The advantage of the 
frequency-domain ICA approach lies in the fact that 
the convolutive combination with a large number of 
unknown parameters is decomposed into multiple, 
independent instantaneous combinations, each with 
fewer parameters to be estimated.  The 
frequency-domain ICA approach is computationally 
efficient since the convolution in the time domain 
becomes computationally efficient multiplications in 
the frequency domain.  In addition, adaptation of the 
ICA algorithm in one frequency bin does not 
interference with others, which results in fast 
convergence.  In general, the frequency-domain ICA 
approach is more attractive than the time-domain 
ICA approach. 
     In existing literatures, many frequency-domain 
ICA approaches [3-6] are proposed to separate the 
convolutive combinations of speech signals.  
However, few references [7, 8] are known for 
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digitally modulated signals in wireless 
communications.  Moreover, the approaches in [3-6] 
do not fully solve the gain ambiguity, that is, the 
recovered signals are the filtered versions of the 
source signals.  However, the technique presented 
here, the Frequency-Domain ICA approach (ICA-F), 
utilizes blind equalizers to successfully solve the gain 
ambiguity.  Thus, the signals recovered by the ICA-F 
are the delayed versions of the source signals.  In 
addition, the ICA-F uses the fourth-order 
cross-cumulant to solve the permutation ambiguity. 
     This contribution is organized as follows.  Section 
2 formulates the convolutive combination model in 
the time and frequency domains.  In Section 3, the 
proposed ICA-F is developed.  In addition, the 
permutation and gain ambiguities associated with the 
frequency-domain ICA approach are successfully 
resolved.  Simulation results are presented in Section 
4.  Finally, conclusions are drawn in Section 5. 
     The following notations are used in this 
contribution.  The superscripts, ∗ , T , and H , 
denote conjugate, transpose, and conjugate transpose, 
respectively.  The operators E  and  denote 
expectation and convolution, respectively.  ←  means 
substitution, i.e., the variable of the right-hand side is 
computed and substituted in the left-hand side.  

 is to form a diagonal matrix from the 
diagonal elements of the matrix W . 
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2   Convolutive Combination Mode 
In the general convolutive combination model, the 
number of the source signals, M , equals the number 
of the received signals.  There are the source signal 
vector  whose elements are the source signals 

 , and the received signal 
vector  whose elements are the received signals 

 1 .  The convolutive 
combination model is expressed in the time domain 
as:  

)(nS
( , =l

)(nX
s( ,

snsl )'

nxm )'

1,...,1,0 −M

,...,1,0= Mm −

)()()( nSnHnX ⊗=                                                (1) 
where  is an unknown )(nH MM ×

l

 matrix, whose 
 entry, , represents the impulse 

response from the transmitter  to the receiver . 
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     The convolutive combination model in (1) allows 
for two important propagation effects typically found 
in fading channels of wireless communications.  
First, the source signal s  does not arrive at 
receivers simultaneously; the s  arrives at 
receivers at different instants.  Second, this model 

describes that the  arrives at a receiver via more 
than one path.  This is known as multipath 
propagation in wireless communications. 
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     The convolutive combination model, shown in 
(1), is represented in the z-transform domain as: 
( ) )()( zSzHzX =                                                           (2) 

where the vectors S  and  denotes the 
z-transforms of S  and , respectively, and 

 is a matrix whose (  entry , , is 
the z- transform of the h . 
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     (1) and (2) indicate that the convolutive 
combination in the time domain corresponds the 
instantaneous combinations in the frequency domain.  
This observation provides insight into the proposed 
Frequency-Domain ICA algorithm (ICA-F), which is 
developed in Section 3. 
 
 
3   Proposed Frequency-Domain ICA 
Approach 
The structure of the proposed ICA-F, which is 
comprised of five processing stages, is shown in Fig. 
1.  The operations in these stages are described in the 
following. 
 
 
3.1 Discrete Short-Time Fourier Transform 

(STFT) 
In this stage, the discrete STFT is applied to the 
received signals .  The analysis window used 
in the discrete STFT, win , is a rectangular 
window of length .  Then, the K-point Fast Fourier 
Transform (FFT) is performed over the windowed 
section of the .  The number 

)(n

xm K  is larger than 
or equal to the window length . L
     The discrete STFT of the , , is 
expressed as: 
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where r , ( 2,1=r ), is the frame number, and k , 
( 1,...,0 1, −= Kk ), is the frequency bin index. 
     In the same way as (3), the  is denoted as 
the discrete STFT of the s .  The convolution 
combination specified in (1) is converted into 

),( krSl

)n(l

K  
instantaneous combinations in the frequency domain 
as: 
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Fig. 1 The structure of the proposed frequency-domain Independent Component Analysis (ICA-F) approach 
with correcting the permutation and gain ambiguities 
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where the vector X  whose elements are the 
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3.2 Natural-Gradient ICA Algorithm 
The source signals s  are assumed to be 
complex-valued, zero-mean, stationary, nongaussian, 
and independent.  In [9], one theorem states that 
functions of independent random variables are also 
statistically independent.  In the proposed ICA-F, the 

 are the linear functions of the , and 
hence are independent.  Consequently, (4) is a valid 
instantaneous combination ICA model in each 
frequency bin. 

snl )'(

skrsl )',( snsl )'(

     The natural-gradient ICA algorithm [10] is used to 
adapt the separating matrix W  to obtain the 

 in each frequency bin.  The Y  is the 

estimate of the S , and suffers from the 
permutation and gain ambiguities, given by: 
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     The natural-gradient ICA algorithm implicitly 
incorporates high-order statistics by using the 
nonlinear function .  Since the digitally 
modulated signal is generally complex-valued with a 
negative kurtosis, the nonlinear function ( )xf  is 
chosen as [2]: 

xxxf 2)( =                                                              (7) 
In each frequency bin, the update rule of the W  is 
given by: 

)(k

( ) ( ) )( ) ( )kWkrYkrIkWkW H   ),(),(  +← µ          (8) 
where µ is the convergence factor, I  is the identity 
matrix, and the vector Y  is given by: ),( kr

[ ]TMlnon krYfkrYfYfkrY )),(()),...,,((((),( 10 −=
                                                                                (9) 
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     The update rule in (8) runs iteratively until the 
 converges.  Following the Minimal Distortion 

Principle (MDP) in [6], the final value of the  is 
given by: 
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3.3 Solving Permutation Ambiguity 
One potential problem with the update rule in (8) is 
that it is insensitive to the row permutations of the 

.  Since (8) is individually adapted in each 
frequency bin, the Y  are extracted with 
arbitrary orders.  If the Y  are extracted from 
the different source signals, they are independent.  
Otherwise, they are statistically dependent.  This 
independent property is measured by the fourth-order 
cross-cumulant.  The fourth-order cross-cumulant 
between Y  and Y , , is 
defined as: 
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In principle, CUM  is zero when  and 
 are from the different source signals.  

Otherwise,  is non-zero. 
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     From the explanation above, a method to solve the 
permutation ambiguity is given as following.  First, 
the order of the Y  is chosen as the reference 
order.  Then, the order of the Y  

srl )'0,(
skrl )',( , 0≠k

sk)'( ,

, is 
adjusted such that it is the same as the reference 
order.  To do so, the recovered source components 
without the permutation ambiguity, U  are 
given by: 

rl ,

)0,()0,( rYrU ll =                                                    (11) 
and 

0      ),,(),( ≠= kkrYkrU ml                                    (12) 
where the Y  has the maximum absolute value 
of CUM  for . 
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3.4 Discrete Inverse Short-Time Fourier 

Transform (ISTFT) 
In this stage, the overlap-add method [11] is used to 
implement the discrete ISTFT.  The overlapping 
occurs when the points of the FFT, K , is larger than 
the window length .   L

3.5 Solving Gain Ambiguity 
Due to the gain ambiguity, the U re 
subjected to arbitrary complex gains in frequency 
bins.  Thus, the s~  are the filtered versions of 
the source signals, and encounter both magnitude and 
phase distortions.  In this paper, blind equalizers 
employing Constant Modulus Algorithm (CMA) [12] 
are used to compensate for these distortions.  CMA is 
a blind equalization technique that restores modulus 
of source signals.  Consequently, the  are the 
delayed versions of the , and are not subjected 
to the phase and amplitude distortion as the . 

skrl )',

snsl )'(ˆ

nsl (~

(  a

snl )'(

s snl )'(
s)'

 
 
4   Simulation Results 
Computer simulations are performed to confirm the 
effectiveness of the proposed ICA-F.  The simulation 
setting, shown in Table 1, is used throughout this 
paper.  The computer simulations employ the 
third-order convolutive combination system with the 
following coefficients as: 
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     The space diagrams of the received signals 
without additive noises are shown in Fig.2a and 
Fig.2b, respectively.  These space diagrams do not 
resemble characteristics of DQPSK due to the 
convolutive combination.  The space diagrams of the 
recovered source signals employing the ICA-F are 
shown in Fig. 3a and 3b, which resemble the 
characteristic DQPSK constellation up to phase 
rotations.  These space diagrams show that the 
proposed ICA-F successfully separates and 
deconvolves the convolutive combination.  Figure 4a 
and Figure 4b present the space diagrams of the 
recovered signals without solving the permutation 
and gain ambiguities.  These results demonstrate that 
the frequency domain ICA approach cannot achieve a 
good performance improvement without solving the 
permutation and gain ambiguities.   
 
 
5   Conclusion 
In wireless communications, the received signals are 
the convolutive combinations of the source signals in 
case of slow, frequency-selective fading channels.  In 

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.187-192)



this contribution, a novel Frequency-Domain 
Independent Component Analysis approach (ICA-F) 
is proposed to blindly separate and deconvolve the 
source signals.  In the ICA-F, the convolutive 
combinations in the time domain are converted to 
multiple instantaneous combinations in the frequency 
domain.  The proposed ICA-F is more 
computationally efficient and converges faster than 
the existing time domain approach.  The ICA-F 
successfully solves the permutation and gain 
ambiguities, which are the major obstacles to 
implement the frequency-domain ICA approach.  
Computer Simulations illustrate the performance of 
the proposed ICA-F. 
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Table 1. Simulation Parameters 

Source signals  

Uniformly-distributed, 
independent 
Differential Quadrature 
Phase Shift Keying 
(DQPSK) 

The number of source 
and received signals 2 

Samples of the 
received signals  90,000 

The length of the 
rectangular window 3 

The points of the FFT 8 
 
 

  
(a)                                     (b) 

 
Fig. 2. Space diagrams of the received signals  
and  
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Fig. 3.  Space diagrams of the recovered signals 

 and , where the permutation and gain 
ambiguities have been corrected using ICA-F 
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Fig. 4.  Space diagrams of the recovered signal 1 and 
recovered signal 2, where the permutation and gain 
ambiguities have not been corrected 
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