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Abstract: Data traffic traces are known to be bursty with long range dependence. The exact self-similarity model of long range
dependence can pose analytical and practical problems at very small and very large time lags. In our model, the time series of the traffic
trace (referred to as the signal) is assumed to possess an autocovariance profile corresponding to exact self-similarity over a range of lags,
{k}, satisfying M < k < L. At lower lags, exact self-similarity may breakdown, or additive moving average type noise (inaccuracies) may
corrupt the autocovariances. At very high lags, far beyond the number of observed samples, the autocovariance structure is irrelevant and may
be assumed to be infinite summable. Therefore, L can be as large as desired. Applications of such a model are discussed. The mean, variance,
and the Hurst parameter of the signal, as well as the autocovariances of any independent zero mean moving average type additive noise are
assumed to be unknown. A class of linear combinations of sample average second order statistics of noisy observations is constructed. They
are unbiased estimates of their corresponding expectations. These expectations are shown to be devoid of the noise statistics. The ratio of two
such expectations eliminates the signal variance. The ratio is a well behaved monotonic function of the only remaining unknown, the Hurst
parameter. Equating the ratio of these expectations to the ratio of the corresponding sample averages from the noisy observations leads to a
very easily solvable nonlinear equation with a unique root. The result and related issues are discussed.

Key-Words: Parameter estimation, Hurst parameter, Fractal dimension, Traffic engineering, Traffic modeling and analysis,
Self-similarity.

1 Introduction

Data traffic in telecommunication networks depicts vastly
different characteristics from those of voice traffic. Several
studies have traced the origin of this distinction to the widely
fluctuating heavy tailed probability density function of data
file sizes, as opposed to the memoryless property of voice
call holding time. Many different approaches have been
used to model such “bursty” data traffic. Some of these are
(a) cumulative amount of traffic received at a point as a Self-
Similar process (Park and Willinger, Chapter 1 in [1]), (b)
aggregation (merging at a point) of numerous ON-OFF data
sources with at least one of the ON or OFF time period ex-
hibiting a heavy-tailed probability density function (Brichet,
Simonian, Massoulie, and Veitch, Chapter 5 in [1]), and (c) a
Poisson sequence of arrivals of data units, each data unit ex-
hibiting a heavy-tailed behavior (Makowski and Parulekar,
Chapter 9 in [1]). Inter-relationships between these mod-
els and some of their variations have also been studied. For
example, the Fractional Brownian Motion (Mandelbrot and
Van Ness [2]) is an example of the family of self-similar pro-
cesses. Relaxation of some strict properties of the exact self-
similar process leads to long-memory processes (Beran [3])
and 1

f
processes (Wornell and Oppenheim [4]). The above

cited monograph [1] edited by Park and Willinger is a col-
lection of articles on the topics of measurement, modeling,
performance analysis, and control of self-similar data traf-
fic. These articles also bring out the above mentioned inter-
relationships. Data traffic is one (and a more recent) appli-

cation of such a class of bursty model processes. Earlier
studies of applications of such processes include long range
Nile river data [3], error clusters in communication systems
[5], and natural scenery [6]. All the known representations
of such bursty processes have one common parameter value.
This parameter has different but equivalent representations
and names. That is, the Hurst parameter H , the fractal di-
mension D, and the the exponent γ of the 1

f
process’ power

spectrum are related as γ = 2H − 1 = 5 − 2D. This paper
develops an estimator for the Hurst parameter starting from
a time series trace of such a bursty signal, possibly corrupted
by independent and short-term (moving average type) corre-
lated additive noise. The mean of the signal is assumed to
be unknown. The estimator is shown to be robust to such
noise. The estimator is based on sums and differences of
unbiased estimates of second order statistics obtained from
the noisy-bursty signal. The term signal (rather than data)
is used for the time series to avoid confusion with the term
data in “data traffic.” The signal can be from any bursty pro-
cess. For example, in data traffic, measurements may be a
sequence of the amounts of data bits received in successive
equal time intervals.

2 Development of Noisy-Bursty Signal Model

2.1 Background and motivation for the model
All the models of bursty data traffic and similar bursty
signals conform, at least to some extent, to the following
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property of self-similarity, seminally explored in Mandel-
brot and Van Ness [2]. Let Z(t) be a real valued stochas-
tic process with a continuous parameter t and δ be a pos-
itive number. If the processes Z(t0 + τ ) − Z(t0) and
δ−H [Z(t0 +δτ )−Z(t0)], H > 0 have the same finite joint
distributions, Z(t) is said to be (exactly) self-similar with
the (Hurst) parameter H . An example of such an exact self-
similar process is the Fractional Brownian motion, Y (t), de-
fined with the help of its increment process, as follows. If
the increment Y (t + t0) − Y (t0) is a zero mean, station-
ary Gaussian process with variance t2H and 0.5 ≤ H < 1,
then Y (t) is called Fractional Brownian Motion (FBM). The
derivative of FBM is a zero mean Gaussian random vari-
able with infinite variance. In addition to this, Mandelbrot
and Van Ness [2] also show the following. (a) FBM has
continuous sample paths with probability 1, but is almost
surely not differentiable. (b) Any non-constant mean-square
continuous exactly self-similar process must be FBM. (c)
Non-Gaussian exactly self-similar processes must necessar-
ily have increments with infinite variance. These properties
imply that the most useful exactly self-similar process is the
FBM. Even FBM presents mathematical difficulties. It is not
mean square differentiable. However, its increments over
any nonzero time intervals have finite variances. The time
series of FBM increments over successive (contiguous) non-
overlapping intervals is called the discrete Fractional Gaus-
sian noise (FGN). It is a stationary sequence. Let V (i) be
an FGN sequence with mean µ and variance of σ2. The au-
tocovariance sequence of V (i) is known to be (Beran [3])

Cj =
σ2

2

[

|j + 1|2H − 2|j|2H + |j − 1|2H
]

(1)

and the normalized (with respect to the variance or the ze-
roth autocovariance σ2) autocovariance coefficients are

cj =
1

2

[

|j + 1|2H − 2|j|2H + |j − 1|2H
]

. (2)

While the discrete FGN overcomes having to deal with the
problems of observations over time periods tending to zero,
it still poses both mathematical and practical problems. The
sum of autocovariances is not finite. That is,

∑∞
j=0 cj = ∞.

Therefore, the Fourier transform of cj is infinity at the zero
frequency point. It is also easy to show that (see Kulkarni
[7]) such an FGN sequence cannot be realized as the output
of a linear, shift invariant, causal, and stable system [8]. The
above are some simple examples to demonstrate the prob-
lems associated with exact self-similarity.

2.2 The model
Mandelbrot [5] emphasizes that the properties of self-
similarity were never meant to hold rigidly when the time
lag is extremely small or extremely large. That is, prac-
tical discrete time bursty signals exhibiting approximate
self-similarity will possess autocovariances that will deviate
from the exact profile. for very large j. The discretization
can be such that the autocovariances of the bursty signal fol-
low (1) for low (positive) values of j. Any deviation from

the profile (1) can be equivalently assumed to be due to the
addition of independent zero mean noise sequence whose
autocovariances are zero for a lag beyond M . These argu-
ments lead us to consider practical bursty signals to exhibit
“limited scale self-similarity” only, and by this, we assume
that the profile of autocovariances of the noisy signal follow
the profile (1) over a finite range M < j ≤ L, but L can be
as large as desired. Unless otherwise mentioned, we assume
that the infinite sequence of autocovariances of the practical
signals sum to a finite quantity. In the above, practical sig-
nals are stationary stochastic processes and autocovariances
are expectations. Sample (observed) signals and sample au-
tocovariances are defined later. Since exact self-similarity is
not assumed, the bursty signal (which is an increment pro-
cess) can be non-Gaussian and still possess finite variance.
Therefore, unless otherwise mentioned, the bursty signal is
not restricted to be Gaussian.

2.3 Applications of the model
The relaxation of the exact self-similarity profile of auto-
covariances at smaller lags, k ≤ M has particular applica-
tions in data traffic engineering, in addition to the possible
breakdown of exact self-similarity at low lags. The process
of measurement of the data traffic trace may cause short-
term correlated perturbations, as follows. The number of
bits over successive equal time intervals in the traffic trace
may be self-similar but measurements may be made in terms
of number of packet fragments over time intervals. There
may be a jitter in the time intervals themselves necessitated
by having to wait for a packet fragment to end. Transforma-
tions in models to generate self-similar traffic may introduce
discrepancies in autocovariances at low lags, for example,
as follows. Dattatreya and Kulkarni [9] use a high order
autoregressive model to synthetically generate a time series
representing a bursty traffic trace. The time series (with all
positive values) can be used as the number of bytes of bursty
traffic over successive time intervals.

3 Hurst Parameter Estimation Literature
Traditional techniques to estimate the Hurst parameter have
been largely graphical, except the Whittle’s estimator, which
is analytically developed. Taqqu, Teverovsky, and Willinger
[10] is an empirical study of them. The autocovariance se-
quence of a bursty signal decays approximately as a nega-
tive power of the lag of the autocovariance. Therefore, the
correlogram of observed signals plotted on a log-log scale
would follow a straight line (approximately), whose slope
determines the Hurst parameter. Similarly, the power spec-
trum of bursty signals varies as a power of the frequency.
A log-log plot of the periodogram of the observed bursty
signal would be approximately linear and again, the slope
determines the Hurst parameter. The Whittle’s estimator fits
the observed power spectrum to a model spectrum and deter-
mines the Hurst parameter by minimizing an error criterion.
In practice, the spectrum of the observed signal is computed
at discrete points through the use of Discrete Fourier Trans-
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form.
Wornell and Oppenheim [4] study estimation of fractal

signals from noisy measurements using wavelets. They use
the following alternative way to avoid the complications due
to the problems of exact self similarity at extremely small
and extremely large time lags. The 1

f
processes are gener-

ally defined as processes whose empirical power spectra are
of the form S(ω) ∼ σ2

|ω|γ over several decades of frequency
ω, where 0 < γ < 2 and typically γ is around 1. Nearly
1
f

processes are defined as those whose spectra deviate from
that of the exact 1

f
process by no more than a constant upper

and lower bound factors. They use an earlier result that one
can construct a class of nearly 1

f
processes using wavelet

expansions in terms of uncorrelated transform coefficients
with a particular variance progression profile. They note
that a corresponding analysis result appears to exist, at least
empirically. That is, for a reasonably arbitrary choice of
wavelet, there is strong empirical evidence that the wavelet
coefficients from these nearly 1

f
processes obey a particu-

lar variance progression and also turn out to be only weakly
correlated. They conclude that the wavelet transform is ef-
fective in removing strong long-range dependence from the
process. Assuming that the wavelet coefficients have been
extracted, they proceed with an EM algorithm [11] to es-
timate the variance of the signal, the variance of the addi-
tive white noise, and the parameter γ (which is affine-related
to the Hurst parameter H) from the functional form of the
wavelet coefficients. They point out that in this case, the
likelihood function has multiple minima, all of which, ex-
cept the desired solution, are avoidable pathological saddle
points.

Abry and Veitch [12] conduct wavelet-based analysis
of long-range dependence and develop an explicit closed
form estimator for the Hurst parameter. The quantities ap-
pearing in the estimator function include inner products of
the signal (a function of time) with several shifted and di-
lated templates of the dual mother wavelet. They mention
that these inner products can be efficiently computed by a
fast recursive filter-bank-based pyramidal algorithm whose
computational cost is extremely low. They point out the fol-
lowing. (a) If multiple parameters are unknown, it is im-
portant to estimate the Hurst parameter first. (b) Under cer-
tain conditions, their estimator is asymptotically unbiased,
and in practice has very low bias. (c) The correlation struc-
ture of the data represented by the wavelet coefficients is
not long-range-dependent, in contrast to the original data.
(d) Under Gaussian and quasidecorrelation of the wavelet
coefficient hypothesis and in the asymptotic limit, it can be
shown that the variance of the estimator is the smallest pos-
sible, that is, equal to the Cramer Rao bound, for a given
parameter value occurring in their analysis. (e) Finite length
data pollutes the wavelet coefficients, if better estimation is
attempted through a higher value of a particular parameter
(in their analysis), and a practical compromise is in order.

Kettani and Gubner [13] propose a simple estimator
for the Hurst parameter based on the known relation be-

tween the normalized first autocovariance coefficient of ex-
actly self-similar signal and the Hurst parameter. The auto-
covariance coefficients in equation (2) are already normal-
ized, since c0 = 1. Using c1 = 22H−1 in equation (2), they
propose Ĥ = 0.5 [1 + log2 (1 + ĉ1)] as an estimate for H

based on the normalized sample average autocovariance co-
efficient ĉ1. They point out a result due to Hosking [14] that
for 0 < H < 3

4
, the estimate ĉ1 is asymptotically normal

and then obtain confidence intervals from the same.

4 Development of the Estimator

4.1 The approach and its justification
The first and second order statistics of long-range depen-
dent data such as from a bursty signal model introduced here
have been widely cited as possessing poor statistical proper-
ties because time average is performed over strongly corre-
lated data. These second order statistics are also biased and
this is often cited as another reason not to use such sample
statistics to estimate the Hurst parameter. As noted in the
above section, sophisticated mathematical transformations
and analyses have been developed by researchers to attempt
to decorrelate the data. The analyses do show that in their
full capabilities (often in the limit, in multiple senses) the
proposed estimators attain the best possible behaviors. They
also demonstrate by a variety of means that even with prac-
tical restrictions, their estimators perform close to their the-
oretically attainable. It is not clear, in general, that even well
developed estimators based on the second order statistics of
the observations must necessarily perform much worse than
the theoretically attainable. This hypothesis does not con-
tradict the known problem of poor second order statistics.
It only suggests that due to the strong and long range per-
sisting correlations in the original signal, the theoretically
attainable performance criteria may not be much better than
those attainable by good estimators based on second order
statistics. In the following, such an estimation equation is
developed through an exact analysis of the statistical prop-
erties of sample average autocovariances of the noisy-bursty
signal.

4.2 Second order statistics of the signal
The following background results are used. Starting from
(2) it is easy to show that

sn =

n
∑

j=0

cj =
1 + (n + 1)2H − n2H

2
, (3)

by induction. Similarly, by induction, it is easy to show that

tm =

m
∑

n=0

sn =
(m + 1)2H + m + 1

2
. (4)

Note that c0 = s0 = t0 = 1. Let x1, ..., xn, ... be the out-
comes of the noise-free bursty signal. Let X1, ..., Xn, ...

be the sequence of corresponding random variables with
mean µ, variance σ2, and autocovariances satisfying (1). Let
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u1, ..., un, ... be the actual noise values added to the noise-
free bursty signal. Let U1, .., Un, ... be the corresponding
stationary, zero mean additive noise random variables with
autocovariances ρ0, ..., ρM, 0, ...,0, .... That is, the auto-
covariances of the additive noise are zero beyond a lag of
M samples. The bursty signal sequence Xi and the addi-
tive noise sequence Ui are independent. Yi = Xi + Ui ,
i = 1, ..., n, ... are the random variables corresponding to
the observed sequence yi from which H is required to be a
estimated. The noise and the bursty signal are independent.
Therefore, the autocovariances of the noisy bursty signal se-
quence work out to be

Rk = σ2ck + ρk. (5)

The autocovariance sequence is an even function; that is,
Rk = R−k. The sample mean of the observed noisy-bursty
signal is

ŷ =
1

n

n
∑

i=1

yi. (6)

The sample average autocovariances are

R̂k =
1

n

n
∑

i=1

(yi − ŷ)(yi+k − ŷ). (7)

Substituting (6) in (7), simplifying, and taking expectation,
we obtain

E[R̂k] = Rk −
1

n2

n
∑

i=1

n
∑

j=1

(Ri+k−j) (8)

where Rk is the autocovariance of the noisy-bursty signal.
We are interested in k > M , above the lag M , so that the
contribution of autocovariances of the noise to Rk in (5) is
zero. To simplify the double summation in (8), the square
grid j = 1, ..., n; i = 1, ..., n is split into four regions as in
Figure 1. Each region includes the boundary; in each region,
the sign of (i + k − j) is unchanging. Using this approach
and after cumbersome algebraic manipulation, we obtain

n
∑

i=1

n
∑

j=1

R|i+k−j| =

n+k−1
∑

l=k

(Rk + ... + Rl)

+

k−1
∑

l=1

(Rl + ... + Rk−1)

+(n − k)(R0 + ... + Rk−1)

+

n−k−1
∑

l=1

(R1 + ... + Rl). (9)

As in (5), for all l, Rl = σ2cl+ρl . Separate each summation
above into two parts, one containing only cl and the other
containing ρl only. After algebraic manipulation,

n
∑

i=1

n
∑

j=1

c|i+k−j| = tn+k−1 + tn−k−1

−2tk−1 − (n − k). (10)

i=j-k, j-1

j=k+2, n

(i, j)

(1,n)

(n,1)i(1,1)

(1,k+1)

(1,k+2)

(1,k)

j=2,k
i=1,j-1

i=1,j-k-1

j=k+1,n

i=j, n

j

(n-k-1,n)        (n-k,n) (n-1,n) (n,n)

  (1,2)

j=1,n

Figure 1. Regions with unchanging signs of (i + k − j)

The contributions of the autocovariances of the additive
noise in (9) get simplified differently (due to ρk = 0,
k > M ). They work out to be

n
∑

i=1

n
∑

j=1

ρ|i+k−j| =

M
∑

l=1

M
∑

j=l

ρj

+n

M
∑

j=0

ρj − k

M
∑

j=0

ρj

+

M
∑

l=1

l
∑

j=1

ρj

+(n − 1 − M )

M
∑

j=1

ρj

−k

M
∑

j=1

ρj (11)

= η − kζ (12)

where η is that part of RHS of (11) which is invariant to k

and

ζ =

M
∑

j=1

ρj +

M
∑

j=0

ρj (13)

is the sum of all coefficients of −k in (11). Combining all
the simplifications, and noting that k > M so that ρk = 0,
we have

E[R̂k] = −
tn+k−1 + tn−k−1 − 2tk−1 − n + k

n2
σ2

+σ2ck +
η − kζ

n2
(14)
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4.3 Elimination of noise statistics and signal
variance

The idea is to add and subtract several sample average auto-
covariance estimates and eliminate the contributions of the
noise statistics in the combined expectation. Thereafter, the
proportionality constant σ2 remains. This can be eliminated
by using ratios of two such sums and differences. For any
sequence

gk = a + bk, (15)

it is easy to verify that

2N
∑

k=N+1

gk −

4N
∑

k=3N+1

gk −

6N
∑

k=5N+1

gk +

8N
∑

k=7N+1

gk = 0.

(16)
Similarly,

3N
∑

k=2N+1

gk −

5N
∑

k=4N+1

gk −

7N
∑

k=6N+1

gk +

9N
∑

k=8N+1

gk = 0.

(17)
Therefore, define the following linear combinations of sam-
ple average autocovariance estimates of the noisy-bursty
signal

R̂T =

2N
∑

k=N+1

R̂k −

4N
∑

k=3N+1

R̂k −

6N
∑

k=5N+1

R̂k +

8N
∑

k=7N+1

R̂k

(18)
and

R̂B =

3N
∑

k=2N+1

R̂k−

5N
∑

k=4N+1

R̂k−

7N
∑

k=6N+1

R̂k+

9N
∑

k=8N+1

R̂k.

(19)
Their expectations are as follows.

E[R̂T ] =
σ2

n2

∑

k∈T

αk

(

n2ck − tn+k−1 − tn−k−1 + 2tk−1

)

(20)
where the summation in (20) is taken over a set T given by

{N+1, .., 2N,3N+1, .., 4N,5N+1, .., 6N,7N+1, .., 8N}
(21)

and αk is a sign variable as follows.

αk = +1, k ∈ {N + 1, ..., 3N, 7N + 1, ..., 9N}

= −1, k ∈ {3N + 1, ..., 7N}. (22)

Similarly,

E[R̂B] =
σ2

n2

∑

k∈B

αk

(

n2ck − tn+k−1 − tn−k−1 + 2tk−1

)

(23)
where the summation in (23) is taken over the set B given
by

{2N+1, ., 3N, 4N+1, ., 5N, 6N+1, ., 7N, 8N+1, ., 9N}
(24)

and the sign function αk is as defined in (22) above. The
parts of the sums and differences

∑

k∈T

αkck and
∑

k∈B

αkck (25)

can be simplified using (3). For example,
(m+1)N

∑

k=mN+1

ck =
[(m + 1)N + 1]2H − [(m + 1)N ]2H

2

−
(mN + 1)2H − (mN )2H

2
. (26)

Obviously, R̂T and R̂B are unbiased estimates for E[R̂T ]
and E[R̂B], respectively. The ratio of these expectations
eliminates σ2 and is a function of H , n, and N only. Of
these, n and N are chosen for data analysis depending on the
number of samples available, M , the lag beyond which the
noise autocovariance is known to vanish, and N is limited
by the number of samples available and the largest lag for
which the autocovariance profile is known to follow (1). To
estimate H , the ratio of R̂T to R̂B is equated to the ratio of
their corresponding expectations. This results in a nonlinear
function of H being equated to a statistic obtained from the
noisy-bursty signal observations. This nonlinear equation in
H is given by

∑

k∈T

αk

(

n2ck − tn+k−1 − tn−k−1 + 2tk−1

)

∑

k∈B

αk (n2ck − tn+k−1 − tn−k−1 + 2tk−1)
=

R̂T

R̂B

.

(27)
In an estimation experiment, the RHS of (27) is a number
and H is the argument of the LHS of (27). The LHS is
well behaved. Figure 2 shows a plot of the LHS of (27) as
a function of H ∈ (0.5, 1.0) for three different combina-
tions of (n, N ). Both E[R̂T ] and E[R̂B] are zero at the
extreme values of H = 0.5 and 1.0. Therefore, the function
is undefined at these extreme values. The determination of
the estimate for H reduces to selecting the value of H for
which the observed statistic R̂T

R̂B

corresponds to the ordinate
of the LHS of (27) drawn as a function of H . This is easily
accomplished either as a numerical solution to the nonlinear
equation (27) or through a table look up.

5 Conclusion
Exact self-similarity of signals is very restrictive and
presents mathematical and practical difficulties at extremely
small and extremely large time lags. Our model allows the
profile of autocovariances to deviate from that of exact self
similarity for small and very large time lags. This over-
comes four difficulties as follows. (a) The breakdown of
exact self-similarity at very small lags due to its require-
ment of unbounded instantaneous variance is overcome. (b)
Additive short-term correlated (moving average type) per-
turbations in the measurement are dealt with. (c) The auto-
covariances of the bursty signal for lags beyond any practi-
cal significance can be assumed to fall off in a way that their
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Figure 2. E[R̂T ]

E[R̂B]
as a function of H; n = 1024 and N = 64

infinite sum is finite, to overcome analytical difficulties. (d)
The variance of stationary bursty signal can be finite without
requiring the signal to be Gaussian.

Applications of the model are discussed. Simple linear
combinations (sums and differences) of sample average sec-
ond order statistics are used to eliminate the noise statistics
in their expectations. The ratio of expectations of two such
sample averages eliminates the signal variance. This results
in a smooth monotonically decreasing function of the single
unknown, H , being equated to the single computed statistic
from the noisy-bursty signal. Solving for H from the result-
ing equation is very simple. The number of required obser-
vation samples is n + 9N . The largest lag for which the
sample average autocovariance is sought is 9N and hence
the model autocovariance profile in (1) must hold for upto
9N .

The development here illustrates a particular choice
of sums and differences of sample average autocovariances.
Other choices can be explored to increase the dynamic range
of the ratio of expectations. The variance of the estimate of
H is not studied here and is definitely an important one.
Derivation of the exact variance of the final H estimate ap-
pears to be very difficult. Other approaches to assess the
quality of the final estimate and comparisons to other es-
timators in the literature are also important studies. With
the estimator developed for H here, approaches to estimate
the autocovariances of the additive noise do not appear to
be very difficult. The smoothing of the effect of noise with
the help of these estimates is another important problem.
Finally, data analysis experiments with simulated data and
Ethernet data traffic trace are also important.
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