
Image Primitives 
Jason M. Kinser 

Bioinformatics and Computational Biology 
George Mason University 

Manassas, VA 20110 
USA 

 
Abstract: Towards the construction of a content based image recognition system it is important to isolate 
and also represent image segments.  There have been several proposed methods of representing a shape but 
many are not sensitive to deviations of the appearance of an object.  Furthermore, it is noted that the set of 
possible shapes is not distributed equally within a representation space.  Thus, liberating the requirement 
that a basis set be orthonormal is justified.  A method is presented here that extracts a basis set from an 
image database and defines shapes from this basis set.  The results indicate that describing shapes from this 
basis set is robust to alterations of the shape such as small occlusions, limited skew, and limited range. 
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1. Justification 
Isolating the inherent shapes within an image 

is important for many applications including 
content based image recognition.  This is not an 
easy task for several reasons including 
illumination gradients, object occlusions, 
shadows, and perspective.  However, the 
isolation of a segment shape is only part of the 
required task.  This shape still needs to be 
represented in a format that is conducive for high 
volume fast comparisons. 

Several researchers have proposed methods for 
describing shapes [1-5]  However, there are 
requirements that need to be met for an 
representation to be effective with real images.  
Consider a case in which the same object is 
shown in two images and the shape of this object 
onto the 2D image plane is isolated.  There are 
still alterations that are often experienced 
between these two shapes.  These include 
perspective and occlusion, and, in real 
applications the actual isolation of a segment is 
difficult due to illumination gradients, detector 
calibrations, and the presence of shadows.  Thus, 
the same object may produce two shapes with 
some differences. 

The differences in these two shapes quite often 
are not uniform.  In other words, a good portion 
of the shape perimeters are similar and the 
differences appear only in one small part of the 
shape.  Consider two shapes A and B which are 
similar except for one small portion (perhaps B 
has a small occlusion).  Any method that relies 

on the centroid of the two shapes to 
mathematically describe the two shapes is 
inherently at a disadvantage since the centroids 
of the two shapes will not be in the same 
location. 

Other methods that describe shape rely on the 
decomposition of the shape by a set of basis 
functions.  Mathematically, there is an argument 
for making this set of functions an orthonormal 
set.  For example, the image can be replicated 
using the decomposition coefficients and the 
basis set.  However, in practice this causes 
problems.  The set of shapes found within 
images is most certainly not distributed equally 
in RN space (where N is the number of pixels).  
Thus, some of the basis functions are not useful 
and others are overworked.  While an 
orthonormal basis function can reproduce shapes 
it may not be the best representation for the 
purposes of comparing shapes. 

Thus, this study offers a different approach.  
Segments from several images were collected 
and clustered in a fashion the matches perimeter 
similarity as opposed to centroid based systems.  
These clusters (some of which may be purged as 
explained later) form the basis set for 
representing a shape.  This basis set is not 
orthonormal but is instead quite sensitive to the 
idiosyncratic nature of the distribution of shapes.  
Thus, shapes that are somewhat common can be 
delineated with the same efficiency as shapes 
that are quite dissimilar. 
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2. System Design 
There are three major components to this work 

of which the first one is not addressed in detail 
here.  Discussion of its optimization is beyond 
the scope of this presentation. The three major 
steps are segment isolation, clustering, and 
generation of the descriptive vectors.  Segment 
isolation is a major task in itself and no attempt 
will be made here to claim that the best method 
has been employed.  This work is more 
concerned with the manipulation of the segments 
once they have been isolated. 

The clustering step will accumulate into 
groups segments that have similar shape.  This 
process uses the original shapes and relies 
heavily on matching the shapes according to size 
and perimeter.  The final step is to represent a 
shape in terms of these clusters. [6] 
 

2.1. Segment Isolation 

As stated, this is a difficult task that warrants a 
separate research effort. Thus, a method was 
chosen here based on previous work and no 
attempt to optimize this step is considered here.  
Object isolation from grey-scale images has been 
successfully demonstrated through the use of 
cortical modeling. [7-11]  The model [12] 
receives an input S and for each pixel establishes 
a neuron with a potential F, a threshold Θ, and 
an output state Y.  The process iterates allowing 
the neurons to cycle through a few pulsations, 
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where f, g, and h are constants.  The neural 
activity of each iteration is captured in the arrays 
Y[n].  These are called pulse images and due to 
neuron synchronization the segments inherent in 
the image cause their associated neurons to fire 
in unison.  Thus, image segments become readily 
available.  The only caveat is that there may be 
more than one segment present in an iteration of 
the neural network thus there is a simple step to 
extract disconnected segments into individual 
frames. 

2.2. Clustering 
A typical image produces between 5 and 15 

isolated segments that are of sufficient size.  In 
this step of the process groups are created that 
contain similar segments.  This system is based 
on a k-means clustering algorithm but there are 
major modifications required. 

2.2.1. Similarity Method 

Before a clustering algorithm can be employed 
there must first be a definition of how two 
entities are compared.  In this case, how are two 
segments compared for similarity? 

These segments are binary and solid (interior 
pixels are 1, exterior pixels are 0, and the edges 
are sharply defined).  Thus, the pertinent 
information is contained in size and the 
perimeter of the shape.  The perimeter is more 
than edge information in that it includes the 
edges and interior information near the edge.  As 
stated earlier it is common to have two shapes 
from the same object that are similar except for 
segments of the perimeter.  Thus, the first step in 
measuring the similarity is to align the two 
segments based mostly on the perimeter. 

This step is accomplished by employing the 
fractional power filter. [13]  This filter has the 
ability to train on several images concurrently 
and to also manipulate the trade off between 
generalization and discrimination that is inherent 
in first order filters.  A matrix X is created such 
that each column contains the rasterized pixels of 
the Fourier components (denoted by the caret) of 
an image.  In our current application one of the 
cluster images A or B is the single column in this 
matrix.  The Fourier components of the filter are 
computed by, 
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The fractional power is the term p which ranges 

from 0 to 2.  In the case of solid segments the 
perimeter information is enhanced and the interior 
is suppressed as p gets closer to 2.  At p=2 the only 
surviving information is the edges and at p=0 the 
entire interior is included in the filter.  If p is too 
large then only the edge information will survive 
and the system becomes too discriminatory, and, A 
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and B would have to have exactly the same 
perimeter to create a match.  Furthermore, it 
should be noted that effect of p is not linear.  Best 
performance has been accomplished with p near 
0.5. 

The filter created from one of the segments 
creates an image with enhanced perimeter 
information.  This is different than edge 
enhancement since this filter includes interior 
information scaled by the distance to the perimeter.  
The correlation of this filter with the other segment 
will produce a correlation spike (if there is 
similarity) and the displacement of the spike from 
the center of the frame is the shift required to 
properly align the two segments.  An example is 
shown in figure 1. 
 

  
Figure 1. An original shape and the FPF of that 
shape.  The darker pixels correspond to the 
importance of the information in the filter. 
 

Once aligned the measure of similarity matches 
the number of pixels that are 1 in both aligned 
images divided by the average number of ON 
pixels in the two images. 

2.2.2. Modified Clustering 

The clustering method is based upon the k-
means clustering algorithm but modifications were 
required.  The original method requires the user to 
define K number of clusters and seed them either 
randomly or through a combination of the training 
data.  The system then iterates through two steps.  
The first assigns each constituent (a segment in our 
case) to a cluster and second re-computes the 
cluster (usually as the average of its members).  
The system iterates until no constituent moves to a 
different cluster. 

In the application to this problem this method in 
its original form got stuck in oscillations.  In one 
iteration some segments would move to a new 
cluster and in the subsequent iteration they would 
move back to their original clusters. 

Thus, modifications were required. The first 
modification was that there was no predefined 

number of clusters.  If a newly considered 
constituent didn’t fit well with any of the existing 
clusters then a new cluster with it as its inaugural 
member was created.  The second modification 
was to iteratively move constituents from one 
cluster to another.  Thus, as soon as one constituent 
is moved the two clusters are updated to reflect the 
addition or loss of a member.  This prevented 
getting trapped in an oscillation and also allowed 
the number of clusters to adjust to the complexity 
of the problem. 

Another problem that was experienced was that 
it was possible that one cluster became widely 
varied and collected several segments that were 
not necessarily similar to each other.  The solution 
to this was to not add a segment to a cluster if it 
caused the intra-cluster variance to increased 
beyond a threshold. 

Finally, there was a purge step.  Some of the 
clusters contained many constituents that were 
similar to each other.  There were, however, other 
clusters that contained only a single constituent.  
The reason for this was that this constituent had a 
shape that was not similar to any of the others in 
the database.  Clusters with less than three 
constituents were removed. 

2.2.3. Shape Representation 
Once the clusters have been developed the final 

step is to represent a probe shape in terms of the 
clusters.  The set of clusters is C and thus the 
number of clusters is |C|.   Using the alignment 
method described above (with the fractional power 
filter) the probe is aligned with each cluster and a 
measure of similarity is computed between each 
cluster and the probe.  In this case it is possible to 
build a filter from all of the constituents within a 
cluster with each column of X being the rasterized 
Fourier components of the individual segments.  
However, the filter calculations are heavily 
dependent upon the number of constituents and 
thus an alternative method was employed.  The 
filter was constructed from the average of the 
constituents. 

Since there are |C| clusters there are |C| number 
of scalars produced when comparing the probe to 
the clusters.  Thus, a vector of this same length is 
created from this set of similarity scalars.  The 
vector V contains the elements V[i] which is the 
comparison of the probe to the i-th cluster. 

In this manner the probe shape is reduced to a 
descriptive vector that relates how similar the 
probe is to each cluster.  Again these comparisons 
are based upon size and perimeter information and 
thus alterations to the probe such as small 
occlusions will not drastically alter the measure of 
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similarity to the clusters and thus will not 
significantly alter the vector representation.  This is 
the strong goal of shape representation. 

3. Experiment 
In this case images selected from random web 

sites were used to create the database.  Some of 
the images were obtained from the same web site 
and were similar in content to each other.  From 
a subset of these images 650 segments were 
isolated. 

3.1. Clusters 

From this 63 individual segments were 
created.  Figure 2 shows the constituents of a 
single cluster.  As can be seen there is common 
perimeter information.  The cluster average is 
also shown and this is the description of the 
cluster. 
 

  
 

  
 

 
Figure 2. Four primitives from a single cluster 
and the aligned average image that defines the 
cluster. 
 

Other clusters are similar in nature with a 
varied number of constituents. 

3.2. Shape Vectors 
Each of the 650 segments was then encoded as 

prescribed in section 2.2.2.  Thus, each segment 
within a cluster also now had a shape vector.  It 
is expected that the shape vector for all similar 
segments be likewise similar.  To test this the 
shape vectors for all of the constituents within a 
cluster were gathered and the statistics 
computed.  The plot in figure 3 depicts the 
values of the components.  In this case only 40 
of the elements are shown to enhance clarity.  
Each error bar displays the average and standard 
deviation of the respective element.  In other 
words the error bar for x=5 is associated with 
cluster#5.  The shapes used in this test were all 
from cluster#0 and this chart indicates that the 
average similarity score for the shapes in 
comparison to cluster#5 was 0.11 with a standard 
deviation of 0.015. 
 

 
Figure 3. The averages and standard deviations 
of the responses to all clusters from the 
constituents of cluster#0. 
 

There are a couple of features that need to 
exist in order for these vectors to be useful.  The 
first is that the error bars need to be small.  Large 
error bars would indicate that the vectors in this 
group had a varied response with respect to a 
cluster.  That would make recognition via the 
shape vector difficult.  The second is that a plot 
for another group of vectors should look 
significantly different.   

Consider the plot in figure 4.  This plot 
corresponds to the cluster response for the 
vectors collected in cluster#2.  It is noticed that 
the response of these vectors were of course 
strongest when compared to cluster#2.  
Furthermore, the response to the other clusters is 
significantly different than those from the 
vectors of cluster#0. 
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Figure 4. The averages and standard deviations 
of the responses to all clusters from the 
constituents of cluster#2. 
 
 

Now, consider a shape that has not been used in 
creating the clusters.  It will create a vector of 
similarity measures to the clusters.  We can then 
compare that vector to the vectors such as shown 
in figures 3 and 4.  For argument assume that this 
probe shape is similar to those in cluster#2.  It is 
expected that the similarity measures of the probe 
to the clusters fall within the error bars as shown in 
figure 4.  Thus, the classification of an unknown 
vector is a measure of similarity to the cluster 
averages (such as figures 3 and 4).  This measure 
is,  
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where v is the similarity measures between the 
probe and the clusters and c is the average 
similarity measures for cluster k  (the plotted points 
in figures 3 and 4).  The standard deviation of 
cluster k  is σ. 

The probe is mostly similar to cluster m if H[m] 
is the smaller value of the similarity measures. 
 

3.3. Comparing Shape Vectors to a 
Database 

Consider the shape shown in figure 5.  It is a 
shape not used in creating the set of primitives. 
 

 
Figure 5.  A probe shape. 
 

The shape vector was computed for this shape 
and compared to the average shape vector of 
each cluster.  The best matching clusters are 
shown in figure 6, and figure 7 shows the worst 
matching cluster. 
 
 
 
 

   
 

  
Figure 6. Best matching clusters according to 
shape vectors. 

 
Figure 7. The worst matching cluster. 
 

The efficacy of the shape vectors is portrayed 
in the similarities of the best matching clusters to 
the probe and the dissimilarity of the cluster in 
figure 7.  Recall that this comparison was 
performed using the 1D shape vectors which in 
this case had 41 elements.  Yet, this comparison 
found the similar shapes according to size and 
perimeters. 

4. Conjecture 
A group of segments were isolated and clustered 

according to similarity of shape as defined by size 
and perimeter.  Each segment was then compared 
to every cluster and a defining shape vector was 
calculated. 

The shape vectors of all of the constituents of a 
cluster were gathered and the average and standard 
deviation of this group was calculated.  This was 
repeated for all clusters. 

A similarity measure was established to 
associate an unknown segment to a cluster via this 
signature.  Thus, it is possible to associate the 
unknown shape to a cluster. 
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