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Abstract: Some convergence properties of an adaptive filter structure which employs an analysis filter bank and
sparse adaptive subfilters are investigated in this paper. By properly choosing the filter bank and the number of
adaptive coefficients, such a structure is capable of modeling any linear system with finite impulse response (FIR).
Using the analysis results derived in this paper, an optimization procedure is described to select the prototype
filter of a cosine modulated filter bank that results in the best convergence rate for a given input signal statistics.
The convergence behavior of the proposed subband adaptation algorithm is verified by computer simulations and
compared to the behavior of previously proposed algorithms. It is shown that significant improvement in the
convergence rate can be obtained with the sparse subband structure using very simple filter banks, when compared
to the conventional direct-form LMS algorithm, for colored input signals.
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1 Introduction

Adaptive algorithms that make use of transforms and
filter banks have been proposed recently [1]-[12] with
the objective of improving the convergence rate of the
least-mean square (LMS) algorithm for colored input
signals with no significant increase in the computa-
tional complexity. Two classes of adaptive filter bank
structures have been reported. In the first one, the
adaptation and filtering are performed at the reduced
sampling rate [1]-[7], which leads to savings in the
computational complexity for high-order adaptive fil-
ters. In the second one, the sampling rates of the sig-
nals inside the structures are not changed, resulting in
a filter structure composed of a parallel connection of
adaptive subfilters [8]-[11] as illustrated in Fig. 1.

The transform-domain LMS algorithm [8] was
one of the first algorithms applying a transform to the
input vector before processing it. In such an algo-
rithm, the transform (usually a DCT or a DFT) corre-
sponds to a simple analysis bank (with filters of length
M for an M -band structure) and only one adaptive
coefficient is used in each subband. The good perfor-
mance of the transform-domain LMS algorithm, how-
ever, relies on the proper choice of the transform em-
ployed, which requires accurate information about the
input signal model. The transform-domain structure
was extended in [9], where sparse adaptive subfilters
were used in the subbands. In [10] and [11], better
analysis filters (of length larger than M ) were used.
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Figure 1: Adaptive structure using an analysis filter
bank and sparse subfilters.

The better selectivity of longer analysis filters, when
compared to those of a transform-based bank, can lead
to a significant reduction in the convergence time for
colored input signals.

The structure of Fig. 1 was believed to be able
to implement only a subclass of FIR systems [11]. In
Section 2 we show that, by properly choosing the fil-
ter bank and the number of coefficients of the adaptive
subfilters, the structure of Fig. 1 becomes capable of
modeling any FIR system, except for the introduction
of an extra input-output delay. The coefficients of the
subfilters are adapted by a normalized LMS-type al-
gorithm, also described in Section 2. The adaptation
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convergence rate of the sparse subband structure is an-
alyzed in Section 3. In Section 4, an optimization pro-
cedure for the design of the filter bank of the structure
of Fig. 1 is described. Computer simulations in sys-
tem identification and acoustic echo cancellation are
presented in Section 5, where the convergence behav-
ior of the proposed adaptive subband structure is com-
pared to those of the conventional LMS and general-
ized transform-domain LMS algorithms. In Section 6,
the concluding remarks are presented.

2 Adaptive Filter Bank Structure
with Sparse Subfilters

The filter bank structure with adaptive sparse subfil-
ters depicted in Fig. 1 can be redrawn as shown in
Fig. 2 by making use of the polyphase representation
of the analysis filter bank [13]. From Fig. 2, the trans-
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Figure 2: Adaptive structure of Fig. 1 with polyphase
representation of the filter bank.

fer function implemented by the adaptive structure of
Fig. 1 is
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where Hp(z) = [Hi,j(z)] is the filter bank type
1 polyphase matrix, with Hi,j(z) being the jth
polyphase component of the ith analysis filter Hi(z),
that is,

Hi(z) =
M−1
∑

j=0

z−jHi,j(z
M ). (2)

In a system identification application, the coeffi-
cients of the subfilters Gi(z

M ) are adapted such as
to model an unknown FIR system, denoted here by

S(z). The unknown system transfer function S(z)
can be expressed in terms of its polyphase components
(S0(z), S1(z), · · · , SM−1(z)) as

S(z)=
[

S0(z
M ) S1(z

M ) · · ·SM−1(z
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]
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(3)

From Eqs. (1) and (3), the subband structure models
exactly the unknown FIR system S(z) when

[

G0(z
M ) G1(z

M ) · · · GM−1(z
M )

]

=
[

S0(z
M ) S1(z

M ) · · · SM−1(z
M )

]

[Hp(z
M )]−1. (4)

Such equality cannot be achieved, in general, with
causal FIR subfilters Gi(z

M ), since the elements of
the matrix [Hp(z

M )]−1 are non-causal and/or IIR.
However, if

[

G0(z
M ) G1(z

M ) · · · GM−1(z
M )

]

=
[

S0(z
M ) S1(z

M ) · · · SM−1(z
M )

]

F p(z
M ) (5)

with F p(z) such that

F p(z)Hp(z) = z−m0

[

IM−r

z−1Ir

]

, (6)

for some integer r with 0 ≤ r ≤ M − 1, some integer
m0, and with Ik the k×k identity matrix, the transfer
function implemented by the structure of Fig. 1 will
be

W (z) = S(z)z−∆ = S(z)z−(m0M+r). (7)

The matrices Hp(z) and F p(z) that satisfy Eq. (6)
correspond, respectively, to the analysis and synthesis
polyphase matrices of a perfect reconstruction mul-
tirate system. Therefore, by using an analysis filter
bank which yields perfect reconstruction and adaptive
subfilters of sufficient order to satisfy Eq. (5), the
structure of Fig. 1 implements exactly any FIR sys-
tem.

For an M -band adaptive structure with analysis
and synthesis filters of length NP , the delay intro-
duced by the filter bank, which must be taken into ac-
count in the adaptation algorithm, is ∆ = m0M +r =
NP − M + r. In order to satisfy Eq. (5), the number
of adaptive coefficients of the subfilters Gi(z) should
be at least K = d(NS + NP )/Me − 1, where NS is
the length of the unknown system.
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2.1 Adaptation Algorithm
A normalized LMS algorithm is used for updating the
coefficients of the subfilters. Denoting xi(n) as the
signal at the output of the ith analysis filter and gi,k as
the kth coefficient of the subfilter Gi(z), the general
form for the LMS adaptation algorithm that minimizes
the overall mean-square error is

gi,k(n) = gi,k(n − 1) + µi(n)e(n)xi(n − Mk), (8)

for i = 0, 1, · · · ,M − 1 and k = 0, 1, · · · ,K − 1. In
the above equation, the error signal e(n) is given by

e(n) = d(n − ∆) − y(n), (9)

where d(n) is the desired response, y(n) is the output
of the adaptive subband structure, and ∆ is the delay
introduced by the filter bank (see Eq. (7)). The step-
size for each subfilter can be made inversely propor-
tional to the power of the corresponding transformed
signal, i.e., µi(n) = µ/p̂i(n) where p̂i(n) is the power
estimate of xi(n). The use of power-normalized step-
sizes in the adaptation of the coefficients of the differ-
ent subfilters increases significantly the convergence
speed of the adaptation algorithm for colored input
signals when compared to the speed of the conven-
tional LMS algorithm (see Section 5).

2.2 Computational Complexity
The major advantage of the adaptive subband struc-
ture of Fig. 1 is the improvement in the convergence
rate which can be achieved for high-correlated input
signals, while keeping the low computational com-
plexity of the LMS algorithm. In this section, we
compare the number of multiplications required by the
proposed subband structure with those required by the
full-band and generalized transform-domain LMS al-
gorithm.

The analysis filter bank of Fig. 1 can be efficiently
implemented using the cosine modulation method in
which only a prototype filter and a discrete cosine
transform (DCT) are computed [18]. In such case, the
overall number of multiplications per input sample re-
quired by the proposed subband structure is

Nmult = 2(NS + NP − M) + NP + NDCT (10)

with the first term corresponding to the filtering and
adaptation of the subfilters Gk(z), the second term
corresponding to the implementation of the prototype
filter, and the last term corresponding to the compu-
tation of the DCT. Since the DCT is calculated for
every new sample of the input, a recursive method
with complexity of order M can be employed (i.e.,
NDCT ≈ O(M)). For high-order adaptive filters, the

dominant term in the above expression is 2NS , which
is equal to the number of multiplications required by
the full-band LMS algorithm. The transform-domain
LMS algorithm with the DCT requires

Nmult = 2NS + NDCT , (11)

where now NDCT ≈ O(NS). For NS >> M and
NS >> NP , (11) is significantly larger than (10).

Although the proposed method increases mem-
ory requirements by a factor of M when compared
to the LMS and transform-domain LMS algorithms,
since M can be chosen arbitrarily (because it is not
related to the impulse response length), such memory
increase can be limited to make the algorithm imple-
mentation feasible in many applications.

3 Convergence Analysis
We study now the convergence properties of the sub-
band structure of Fig. 1 when the coefficients are up-
dated by the normalized LMS adaptation algorithm of
Eq. (8). Let us define the augmented input vector as

xa(n) =
[

x(n) x(n − 1) · · · x(n − L)
]T

, (12)

where L = NP +M(K−1)−1, and H i as the matrix
of dimension K × L with the first row containing the
NP coefficients of the ith analysis filter Hi(z) com-
pleted with L − NP zeros and the next rows given by
the previous row circularly shifted to the right by M
samples. Then, the vector xi(n), containing the sam-
ples of the transformed signals which are weighted by
the coefficients of Gi(z

M ), is given by

xi(n) =













xi(n)
xi(n − M)

...
xi (n − (K − 1)M)













= H ixa(n). (13)

Using the above vector definitions and the follow-
ing weight vectors

gi(n) =
[

gi,0(n) gi,1(n) · · · gi,K−1(n)
]T

, (14)

g(n) =
[

g0(n) g1(n) · · · gM−1(n)
]T

, (15)

the output of the adaptive structure can be written as

y(n) =
M−1
∑

i=0

gi(n)T xi(n) =
M−1
∑

i=0

gi(n)T Hixa(n)

= g(n)T







H0
...

HM−1






xa(n) (16)
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The update equation (8) in vector notation is then
given by

g(n+1)=g(n)+µ[d(n−∆)−y(n)]







H0
...

HM−1






xa(n),

(17)
where

µ = diag{µ0IK , µ1IK , · · · , µM−1IK}. (18)

Taking expected values of both sides of Eq. (17),
using Eq. (16) and assuming stationarity and that
the input vector xa(n) and the weight vector g(n) at
the same iteration are uncorrelated (“independence as-
sumption” [17]), we have

E[g(n+1)]=E[g(n)] + µ







H0
...

HM−1






{pxad

−Rxaxa

[

HT
0 · · ·H

T
M−1

]

E[g(n)]},(19)

where Rxaxa
= E[xa(n)xa(n)T ] is the aug-

mented input autocorrelation matrix, and pxad =
E[xa(n)d(n − ∆)] is the input-delayed desired re-
sponse cross-correlation vector.

From Eq. (19), the convergence performance of
the adaptive algorithm is governed by the eigenvalues
of the matrix

R=µ









H0Rxaxa
HT

0 · · · H0Rxaxa
HT

M−1
...

. . .
...

HM−1Rxaxa
HT

0 · · · HM−1Rxaxa
HT

M−1









.

(20)

Therefore, having some knowledge of the input sig-
nal statistics, we can estimate the improvement in the
convergence rate obtained with the structure of Fig.
1. Such analysis results can also be used to select the
best analysis filter bank of Fig. 1, for a given input
signal.

4 Filter Bank Design
In this section we describe an optimization procedure
to obtain the perfect reconstruction cosine modulated
filter bank which results in the best convergence rate
for a given input signal second-order statistics when
used in the structure of Fig. 1. Assuming that p(n) is
the impulse response of an NP -length prototype filter
P (z) of an M -band cosine modulated filter bank, the
analysis filters are [13]

hk(n)=2p(n)cos
[

π

M
(k+

1

2
)(n−

NP −1

2
)+θk

]

(21)

where θk = (−1)k π
4 , for 0 ≤ k ≤ M − 1 and

0 ≤ n ≤ NP − 1. The necessary and sufficient
conditions that a linear-phase prototype filter of length
NP = 2mM has to satisfy in order to guarantee per-
fect reconstruction, for M even, are given by [14]

Pk(z
−1)Pk(z)+PM+k(z

−1)PM+k(z) =
1

2M
(22)

for 0 ≤ k ≤ M
2 − 1, where Pk(z) are the type 1

polyphase components of P (z). Such constraints can
be written in a quadratic form in terms of the proto-
type filter coefficients (taking into account the sym-
metry in the coefficients) [15] as follows:

pT
[

V kJDnV T
k + V M+kJDnV T

M+k

]

p =
{

0 , 0 ≤ n ≤ m − 2
1

2M
, n = m − 1

(23)

where

p = [p(0) p(1) · · · p(mM − 1)]T , (24)

[V k]i,j=







1, i=k + 2jM, k + 2jM < mM
1, i=2M(m − j)−1−k, k+2jM≥mM
0, otherwise

(25)

J =







0 . . . 1
...

. . .
...

1 . . . 0






, (26)

[Dn]i,j =

{

1, n = i + j
0, otherwise

(27)

with 0 ≤ k ≤ M
2 − 1 and 0 ≤ n ≤ m − 1. The di-

mensions of p, V k, J e Dn are mM × 1, mM × m,
m×m and m×m, respectively. The above constraints
are used in the quadratic-constrained least squares
(QCLS) approach [15], with cost function given by
the prototype filter stopband energy.

In order to reduce the convergence time of the
adaptation algorithm of Eq. (8), the filter bank co-
efficients can be selected by a quadratic-constrained
least squares optimization procedure, with cost func-
tion given by

ξ =

[

λmax(R)

λmin(R)
− 1

]

(28)

and quadratic constraints given by Eq. (23). The ma-
trix R of Eq. (20) has dimension MK ×MK , which
is large for a high order unknown system, resulting in
an optimization problem of high complexity and pro-
cessing time. However, in practice, we have verified
that the optimization can be performed with a lower
dimension matrix (i.e, considering a smaller number
of adaptive coefficients K) without significant modi-
fication in the final prototype coefficients.
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Algorithm λmax(R)/λmin(R)

LMS 346.64
DCT 49.63

AFBS-QCLS 29.21
AFBS-Opt. 14.19

Table 1: Corresponding eigenvalue ratios for the sim-
ulations of Fig. 3

5 Simulation Results

Computer simulations are presented in order to illus-
trate the convergence behavior of the adaptive filter
bank structure investigated in this paper. In the first
experiment, the identification of a length NS = 128
FIR system (with coefficients randomly obtained from
samples of Gaussian white noise) is considered, with
input signal generated by passing a white noise se-
quence by a first-order IIR filter with pole located at
z = 0.9. The adaptive filter bank structure was simu-
lated with M = 8 subbands, employing cosine mod-
ulated analysis filter banks with prototype filters of
length NP = 16 designed by the optimization pro-
cedure described in Section 4 (AFBS-Opt.) and by
the quadratic constrained least-squares approach with
stopband energy minimization (AFBS-QCLS). Each
sparse subfilter contained K = 17 non-zero coeffi-
cients. In the prototype design method of Section 4,
a matrix R of reduced dimension 72 × 72 (consider-
ing K = 9 instead of K = 17) was used in order
to decrease the computational complexity of the op-
timization procedure. The step-size for each subfilter
was inversely proportional to the power of the corre-
sponding transformed signal xi(n), i.e.,

µi(n) = µ/p̂i(n) (29)

with

p̂i(n) = 0.9p̂i(n − 1) + 0.1x2
i (n) (30)

and µ = 0.5/(KM) in all simulations. Figure 3
presents the mean-square error (MSE) evolution of the
adaptive filter bank structure with both prototype fil-
ters, of the conventional normalized LMS algorithm
(LMS) and of the generalized transform-domain algo-
rithm with a cosine transform of size 8 (DCT). Table
1 contains the eigenvalue ratios of the corresponding
autocorrelation matrices R (Eq. (20)). It can be ob-
served from the experimental results of Fig. 3 that
the filter bank structure has significantly better perfor-
mance than the LMS and the generalized transform-
domain (DCT) algorithms, as expected from the the-
oretical analysis results of Table 1. The design of the
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Figure 3: Results for the system identification experi-
ment.

filter bank according to Section 4 improves signifi-
cantly the convergence performance of the filter bank
structure.

Another experiment with the adaptive filter bank
structure and with the full-band LMS algorithm was
carried out for echo canceling in a teleconference
room. The microphone and loudspeaker signals were
sampled at 8KHz. The filter bank structure was simu-
lated with M = 8 subbands, using the same optimized
cosine modulated filter bank of the system identifi-
cation experiment. In order to implement a length
NS = 1, 200 impulse response, K = 151 coeffi-
cients were used in each subband. To visualize the
improvement obtained with the filter bank structure,
the residual echo was decomposed in four subbands.
In the low frequency band, the LMS and the AFBS al-
gorithms had the same performance. However, in the
other frequency bands, the residual echo of the AFBS
was significantly smaller, as can be seen in Fig. 4 for
the third subband. The delay introduced by the AFBS
was of only 8 samples (1ms) and the computational
complexity was slightly higher than that of the LMS
algorithm (60 more multiplications).

6 Conclusions
We investigated, in this paper, the convergence prop-
erties of an adaptive filter structure which employs fil-
ter banks and sparse subfilters. The conditions on the
filter bank and adaptive subfilter length were derived
such that the structure becomes capable of exactly
modeling any FIR system. The convergence behav-
ior of the proposed adaptive structure was analyzed,
and an optimization method based on this analysis
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Figure 4: Results for the acoustic echo cancelling ex-
periment: residual echo for the LMS (top) and AFBS
(bottom).

was described for the design of the prototype filter of
a cosine modulated filter bank. Computer simulations
were presented in order to compare the performance
of the proposed structure to those of previously pro-
posed algorithms. It was shown that besides exactly
modeling, significant convergence improvement can
be obtained with the proposed structure for colored
input signals.
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