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Abstract: - This work presents a framework for wavelet-based representation of a given deterministic signal. 
We propose a method for matched wavelet based representation of the signal. Our method requires a signal-
conditioning step at each stage of the wavelet decomposition. The wavelet system designed in this work is 
biorthogonal. Both the signal-conditioning step and the wavelet system depend on the given signal. The 
proposed method is valid for signals having arbitrary spectra. The proposed method when applied to 
compression of different signals shows substantial improvement over. 
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1 Introduction 
     Appropriate signal representation is a 
fundamental issue in any signal processing task. 
Representation of a signal is either dictated by 
certain embedded features of the signal or is driven 
by the application at hand. The time impulse 
functions and complex exponentials are two 
extreme bases. The wavelet basis for the signal 
representation offers infinite number of 
possibilities between these two extremes cases and 
uses the scaled and translated version of some basic 
function. The non-uniqueness in the choice of basis 
is one of the important reasons for it to find 
widespread applications in signal processing. 
Depending on the application, it has to be suitably 
chosen. But finding a suitable basis is a nontrivial 
task and many researchers in recent past have 
attempted to answer this. Since wavelet 
representation is particularly useful for representing   
non - stationary signals it is interesting to find a 
basis that represents the given signal in some 
optimal way. Many applications of signal 
representation, such as image and speech 
compression, adaptive coding and pattern 
recognition require wavelets are matched to signal 
of interest. 
     Daubechies’ classic technique [1, 2] for finding 
orthonormal and biorthogonal wavelet bases 
respectively with compact support is often used as 
default in many wavelet applications. However, the 
wavelets produced are independent of the signal 
being analyzed. Tewfik et. al.[3] have developed a 
technique for finding an optimal orthonormal 
wavelet basis for representing a specified signal  
within a finite a number of scales. Gopinath et. 

al.[4] extended the result of Tewfik, et al., by 
assuming band-limited signals and finding the 
optimal M-band wavelet basis for representing a 
desired signal, again within a finite number of 
scales. 
       The wavelet design techniques developed by 
Mallat and Zheng [5] builds non-orthonormal 
wavelet bases from a library of existing wavelets in 
such a way that some error cost function is 
minimized. This technique is constrained by the 
library of functions used and do not satisfy the need 
for optimal correlation in both scale and translation. 
Aldroubi and Unser [6] match a wavelet basis to a 
desired signal by either projecting the desired 
signal onto an existing wavelet basis, or 
transforming the wavelet basis under certain 
conditions such that the error norm between the 
desired signal and the new wavelet basis is 
minimum. Both of these techniques are constrained 
by their initial choice of MRA. Chapa and Rao [7] 
have proposed an algorithm for designing wavelets 
matched to the given signal. Recently Anubha et 
al., [8] have proposed a method for finding a 
matched wavelet for the given deterministic signal.  
The approach uses the deterministic autocorrelation 
function of decimated input signal. 
        In this research work we are proposing a 
scheme for wavelet based signal representation. 
Our approach uses a novel signal-conditioning step 
at each stage of wavelet decomposition. Our 
approach is valid for a wide class of signals having 
arbitrary spectra. This paper consists of the five 
sections. In section 2 we give motivation of the 
present work and formulate the problem. In section 
3 we give the theory of the proposed solution in 
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detail. Section 4 contains the simulations results 
and comparisons with the previous work. Section 5 
contains the conclusions and discussion. 
 
 
2 Motivation of the Problem 
     Wavelet offers infinite possibilities for signal 
representation. Different types of wavelets with 
different features have been proposed in the 
literature [9]. But most of them have been designed 
without reference to the particular signal at hand. 
The given basis is efficient if there is strong 
correlation between the given signal and the chosen 
basis. Therefore it is motivating to design the 
wavelet basis from the given deterministic signal. 
Also for a wavelet representation to be efficient it 
requires more than one level of decomposition. 
And this will be most efficient if the signal spectra 
also follow 1/f law. 
     Recently Anubha et al., [8]  have proposed a 
method for finding a matched wavelet for a given 
deterministic signal. The proposed method finds a 
wavelet system such that on decomposition it 
projects maximum signal energy on the successive 
scaling sub space. This method works as long as 
the signal is dominantly a low pass i.e., the 
majority of signal energy is in the low frequency 
band. But if the signal has very less signal energy 
in the low frequency domain then the present 
framework is unable to design a wavelet system. 
The method does not perform well when signal is 
not a dominantly low pass signal and is not 
efficient when signal spectra do not follow 1/f law. 
       In general a signal can have arbitrary spectra 
and also at a stage of wavelet decomposition the 
resultant signal can have arbitrary spectra. 
Therefore there is a need of a framework that 
represents a signal belonging to a wide class. 
Motivated by the above discussion, the problem is 
formulated as follows:  Find a wavelet based 
system that can efficiently represent a signal having 
arbitrary spectra. 
 
3 The Proposed solution 
     
3.1 Introduction 
     As mentioned earlier, in this section we 
present a scheme for wavelet based signal 
representation of a given deterministic signal 
having arbitrary spectra.  Our method is based on 
the fact that wavelet representation of the signal is 
efficient if on consecutive decomposition, signal 
has more energy in the scaling space and less in the 
subsequent  wavelet  space. But  natural   occurring  
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signal in general are not  restricted  to    dominantly  
low frequency signal and also at any stage after the 
decomposition we can have an arbitrary signal 
spectra. 
     Consider a signal x(n), whose spectra is as 
shown in Fig. 1. If we want to represent the signal 
by wavelet, we will do first a stage of wavelet 
decomposition and then further decompose the low 
pass filter path a number of times. Since the signal 
does not have any energy in the subsequent low 
pass filter path the resultant representation is not 
efficient. But if we transform the signal to a low 
pass signal and do wavelet decomposition then the 
resultant wavelet representation will be efficient.  
     The scheme provides for a signal conditioning 
transformation T, such that it transforms the given 
signal to a dominantly low pass signal. After the 
signal conditioning, a wavelet system is designed 
from the transformed signal such that it projects 
maximum energy in the successive scaling space. 
In this way the transformed signal and hence the 
original signal will have an efficient representation 
by the modified wavelet based (MWB) system. 
Also the work presented in [8] becomes a special 
case of MWB system. The wavelet system is 
designed through a high pass analysis filter h1 from 
the signal. A complete one level of signal 
decomposition step of MWB will have the form as 
shown in fig.1. From signal processing point of 
view perfect reconstruction property of the filter 
bank corresponding to wavelet is important. In this 
work the wavelet system designed is biorthogonal 
and it has   compact   support  and   allows   perfect  

 Fig. 1. A signal X(ejw) having high pass spectra  

Fig. 2. A stage of the modified wavelet based 
decomposition
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reconstruction. The resultant representation will be 
efficient    for    any   arbitrary    signal. Following 
subsections gives the proposed theory in detail. 
 
3.2 Signal Conditioning  
     Suppose signal x(n) can have discrete Fourier 
transform X(ejω). We now define Low pass signal 
energy (LPSE) and High pass signal energy 
(HPSE) as 
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We propose and define the following signal 
conditioning transformation before the wavelet 
decomposition: 
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The effect of this transformation is that, if the 
signal is dominantly a low pass then the signal is 
not transformed and if the signal is not dominantly 
low pass then spectra changes to X(ej(ω+π)) and 
becomes low pass signal. When signal-conditioning 
T is applied to the signal in Fig. 1, the transformed 
signal becomes a dominantly low pass signal from 
as shown in Fig. 3. This transformation ensures that 
we always have more energy in the low frequency 
band before the decomposition. Note that signal 
conditioning transformation T is invertible. Now 
application of wavelet decomposition on the 
transformed signal will provide better 
representation.  
 
3.2 Design of Wavelet Analysis Filter 
Let b0(n) be the signal we get after the signal 
conditioning transformation T applied. Consider a 
2-band wavelet system to which the transformed  
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signal b0(n) is applied as shown in fig. 2. We want 
to derive a wavelet system such that it puts 
minimum energy in the successive wavelet space 
[8]. The aim is to find a closed form solution from 
the signal itself. The signal b0(n) can be 
decomposed into  b-1(n) and d-1(n). The output b-

1(n) and d-1(n ) from the analysis filter bank are the 
coefficients of expansion in the next lower scaling 
space V-1 and the wavelet space W-1, i.e. 
 )2()()( 001 knbkhnb
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Since our aim is to design high pass filter h1, the d-1 
should carry the details only. Let the length of the 
filter be N. Let the continuous time signal 
reconstructed from b0(n)  and d-1(n ) be b(t) and d(t) 
respectively. Therefore, if φ(t) and ψ(t) be the 
scaling function and the wavelet function for the 
reconstruction, then 
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The difference of the above signal is 
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To find a closed form solution for h1(n), we use the 
orthogonality condition of wavelet basis in the 
expression for S. We get, 
 

Fig. 4. A 2-band analysis filter bank 

Fig. 3. The transformed signal TX(ejw) ‘s spectra, 
showing the low pass nature. 
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By maximizing S, as a function of h1(n), the 
resulting equation is 
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Here, jth filter weight is kept constant to value 
1.The proposed method leads to a closed form 
expression and it can this error is indeed 
maximized.                                                    
 
3.3 Complete Modified Wavelet Based 
System 
Once we get the high pass analysis filter h1(n) from 
the signal statistics, we can impose condition for 
the resultant filter bank to be biorthogonal. The 
resultant complete modified wavelet based system 
will be as shown in Fig. 5. The four filters h0, h1, f0, 
f1 are related by following equations for the 
condition of perfect reconstruction [2]. 

)()1()( 101 nNfnh n −−=                               (14)                         

)()1()( 101 nNhnf n −−=                               (15)                                   
where, N1 is any odd delay. 
From (14), the scaling filter f0 is computed. Since 
the integer translates of φ(t) and ψ(t) form the basis 
of V0 and W0 respectively, f0(2m-n) and f1(2m-n) 
form the basis for integer values of m. Similarly, 
h0(n-2m) and h1(n-2m) form the dual basis of l2(Z) 
for integer values of m. Therefore 

)()2()2( 212010 mmmnfmnh
n

−=−−∑ δ   

        Zmm ∈∀ 21 ,                                           (16)                         
The analysis filter h0 can be found by solving (16). 
After solving for h0, the filter f1  can be found using 
(15). Hence all the four filters of 2-band wavelet 
system can be computed to form a perfect 
reconstruction biorthogonal FIR filter bank. 
 

4 Simulation Results 
Three different deterministic signals have been 
taken for the simulation purposes. The simulations 
are done on MATLAB software. The first signal is 
a predominantly a high frequency signal as shown 
in Figs. 6(a, b). First, simulations are carried out 
using the signal matched wavelet (SMW) method 
as proposed in [8] recently. When we are designing 
the high pass analysis filter of the match wavelet, 
the algorithm gives instead a low pass filter as 
shown in Fig. 6(c). Which is in contradictory to the 
requirement of the wavelet system. 
 

 
 
 

 
 
 
 
 
 

 
 
 

Fig. 6. (a) Test signal 1.

Fig. 6. (b) Frequency Magnitude response of the test 
signal. 

Fig. 6. (c) Frequency Magnitude response of the analysis 
filter h1. 

Fig. 5. The complete modified wavelet based 
analysis and synthesis filter bank 
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     Further simulations are done in terms of the 
compression power of the two methods of   
wavelet-modified wavelet based (MWB) method 
as proposed by us. For the SBW we have used 
‘bior 4.4’ as listed in Wavelet Toolbox of the 
MATLAB software. Since the above two methods 
uses different wavelets and are designed with 
different criterion, we have adopted different 
mechanism for their bit allocation. 
For the SBW method following is the method for 
bit allocation in different band. If an overall bit rate 
of R bits per sample is assigned, then the bit 
allocation for the sub-bands is: 
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where, σ1
2 is the variance of scaling sub-band and 

σ2
2

 is the variance of the signal in wavelet sub-
band. And R1 and R2 are the bits required for the 
scaling and wavelet sub-bands respectively. For 
each sub-band number of quantization levels are 
chosen depending on the bits for the sub-band and 
uniform quantization is applied. The compression 
is in terms of energy they project in the scaling 
space of the wavelet system used for 
decomposition. The reconstructed signal energy is 
a good measure of compression power of the 
wavelet system chosen. 
For MWB method, since the wavelet is designed 
such that maximum signal energy in the scaling 
space, a different strategy for bit allocation is 
assigned. For the given signal, we use R1 as it is in 
SBW but for R2 we kept the value to zero. The 
performance is measured in terms of peak signal to 
noise ratio (PSNR), which is defined as 

       
Nne

nx
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2

10 ∑
≡          (18) 

Here, N is equal to total number of samples in the 
input signal x(n) and e(n) is the error between input 
signal sample and the reconstructed signal sample. 
Following are the simulation results for various test 
signal. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. (a) Test signal 1 reconstructed from SBW method

Fig. 7. (b) Test signal 1 reconstructed from MWB method

Fig. 8. (a) Test signal 2 

Fig. 8. (b) Test signal 1 reconstructed from SBW method

Fig. 8. (c) Test signal 1 reconstructed from MWB method
Table 1. Performance in terms of PSNR of SBW and MWB 
methods 

Bit allocated PSNR (dB) 
Scaling  space 
 

Wavelet space 
signal 

SBW MWB SBW MWB 

SBW MWB 

Test 
signal 1 

4 4 1 0 19.69 26.05 

Test 
signal 
2 

4 4 1 0 26.95 33.21 
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5 Conclusions and Discussion 
     The simulation on Test signal 1 has shown the 
limitation of the present framework of signal-
matched wavelet. This is intuitively also correct, 
for the signal, which is dominantly a high pass 
signal, we cannot have wavelet filter as high pass 
and still projecting minimum energy in the wavelet 
space. The simple signal-conditioning step allows 
us to project maximum signal energy in the 
successive scaling space. This signal-conditioning 
step is easier to implement in the algorithm. Since 
we project maximum energy in the scaling space, it 
is useful in terms of efficient signal representation.  
This is demonstrated in the Fig. 7 and Fig. 8. Table 
1 also shows the compression performance in terms 
of PSNR. The simulation results shows that MWB 
method has better performance than the SBW 
method.  
     But biorthogonal wavelets are no longer energy 
conserving. Thus bit allocation algorithms as given 
by (17) are not optimal. Therefore coding for 
designed biorthogonal system is under 
investigation.  Also in this work we have done only 
one level of wavelet decomposition. Therefore the 
work for a number of levels of decomposition is 
also under investigation. 
 
 
Reference: 
[1] I. Daubechies, Orthonormal bases of compactly 
supported wavelets, Comm. Pur. Appl., Math. Vol 
41, No.  11, 1988, pp. 909-996. 

[2] A. Cohen, I. Daubechies and J.C. Feauveau, 
Biorthogonal bases of compactly supported 
wavelets, Comm. Pur. Appl. Math., Vol 45, 1992, 
pp. 485-560.  
[3] A. H. Tewfik et. al., On the optimal choice of 
wavelet for signal representation, IEEE Trans. Inf. 
Theory, Vol 38, No. 3, 1992, pp. 747-766. 
[4] R.A. Gopinath, J.E. Odegard, C.S. Burrus, 
Optimal wavelet representation of signal and 
wavelet sampling theorem, IEEE Trans. Circuits 
Systems II, Vol. 41, No. 4, 1994, pp. 262-277. 
[5] S. Mallat and Z. Zhang, Matching pursuits with 
time-frequency dictionaries, IEEE Trans. Signal 
Process., Vol. 41, No. 12, 1993, pp. 3397-3415. 
[6] A. Aldroubi, M. Unser, Families of 
multiresolution and wavelet spaces with optimal 
properties, Numer. Func. Anal., Vol. 14, No. 5-6, 
1993, pp. 417-416. 
[7] J. O. Chapa, R. M. Rao, Algorithm for 
designing wavelets to match a specified signal, 
IEEE Trans. Sig. Process., Vol. 48, No. 12, 2000, 
pp.3395-3406. 
[8]. A. Gupta, S. D. Joshi, S. Prasad, A new method 
of estimating wavelet with desired features from a 
given signal, Signal Processing Journal, Elsevier, 
Vol. 85, 2005, pp. 147-161. 
[9] M. Vetterli and J. Kovacevic,  Wavelets and 
Subband Coding, Prentice Hall, Englewood Cliffs, 
NJ, 1995. 
[10] B. E. Usevitch, A Tutorial on modern Lossy 
Wavelet Image Compression: Foundation of JPEG 
2000, IEEE Signal Proc. Mag., Vol. 18, Sep. 2001, 
pp. 22-35. 

 

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.41-46)


