
Random doping induced fluctuations in p-n junction diodes 
 

LIVIU ONICIUC and PETRU ANDREI 
Department of Electrical and Computer Engineering 

Florida State University and Florida A&M University 
2525 Pottsdamer St., Tallahassee FL 32309 

ROMANIA 

 
 

Abstract: - Random doping induced fluctuations in p-n junction diodes are analyzed by using the linearization 
technique. The doping concentration is considered a random variable in the transport equations and all 
fluctuating quantities are linearized around their average values. Numerical results for a p-n junction diode 
with simplified structure are presented for the fluctuations of the terminal currents and small-signal 
parameters. 
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1   Introduction 
Dopant concentrations in semiconductor devices [1] 
are subject to stochastic variations due to the 
random nature of ion implantation and diffusion 
processes. Random fluctuations of doping are 
especially pronounced in small devices where 
spatial scales of these fluctuations are more or less 
comparable with device dimensions. The random 
dopant fluctuations lead to appreciable fluctuations 
of device parameters. For this reason, an accurate 
analysis of random dopant-induced effects is very 
important for further progress in the area of 
semiconductor device technology. 

There are two conceptually different approaches 
to the analysis of random doping induced 
fluctuations in semiconductor devices. The first 
approach [2], known as the Monte Carlo approach, 
is based on generating numerous realizations of the 
doping and solving the transport equations for each 
of such realization. Statistics of different parameters 
of interest are then accumulated and used to 
evaluate the average values and variances of those 
parameters. These methods are computationally 
very expensive since the same device-level 
simulations have to be performed many times. The 
second approach [3]-[5], known as the linearization 
technique is based on linearization of the transport 
equations with respect to the fluctuating quantities 
and allows the computation of the standard 
deviation of intrinsic parameters of semiconductor 
devices, such as terminal currents and frequency 
characteristics. The linearization technique is much 
more computationally efficient than the Monte 
Carlo method because it circumvents computations 
for many devices. In addition, the linearization 
technique provides information on the sensitivity of 
parameter variances to locations of the random 

doping fluctuations, which makes it instrumental in 
the design of fluctuation resistant structures. In this 
article we develop a linearization technique for the 
analysis of fluctuations of terminal currents and 
small-signal parameters in p-n junction diodes. 

The article is structure as follows. The transport 
model used in the simulations is briefly presented in 
Section II. In Section III we present the linearization 
technique and we apply it to the analysis of 
fluctuations of terminal currents and small-signal 
parameters. Numerical simulations results are 
presented in Section IV, which is followed by 
Conclusions. 
 
 
2   Transport model 
The electron and hole concentrations in p-n 
junctions can be described by using the classical 
drift-diffusion model [6]: 

 ( ) ( ) 0q p n Dε ϕ∇ ⋅ ∇ + − + = , (1) 

 
( ) ( ), ,n n

n n D n R n p
t

µ ϕ ϕ∂
= ∇⋅ − ∇ + ∇ −

∂ , (2) 

 
( ) ( ), ,p P

p p D p R n p
t

µ ϕ ϕ∂
= ∇⋅ ∇ + ∇ −

∂ , (3) 
where R  is the electron-hole recombination rate, ϕ  
is the electric potential, and n , nµ , nD  and p , 

pµ , pD  are the concentration, mobility, and 
diffusivity of the electrons and holes, respectively. 
In our simulations the electron and hole mobilities 
are described by the well-calibrated model presented 
in [4] and [5]. 
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3   Analysis of fluctuations by 
linearization 
In general, any parameter A  such as terminal 
currents or small-signal parameters can be written as 
a function of doping concentration D  in the diode 
[7]: 
 ( )A A= D . (4) 
In equation (4), we have considered that the doping 
concentration is a function of position. Hence, if the 
region of the semiconductor device is spatially 
discretized into N  cells, the doping concentration 
must be specified as an N -dimensional column 
vector whose components are the mesh-point values 
of the doping concentration. The doping 
concentration vector is as a random quantity, which 
can be written as the sum of its average value 0D  
and fluctuation %D : 
 %

0D = D + D , (5) 
where by definition, the expected value of %D  is 
equal to zero. In the first-order approximation, the 
fluctuations of parameter A  can be computed by 
linearization:  

 i
A i

i

AA Dγ∂
=
∂ ∑% % %D =
D

, (6) 

where i
Aγ  are called the doping superposition 

coefficients. These coefficients show how sensitive 
parameter A  is to the fluctuations of doping 
concentration at specific locations in the device. It is 
customary to assume that doping densities at 
different locations are independent random 
variables. This allows us to derive the following 
expression for the variance of parameter A : 

 ( )22 2
i

i
A A D

i
σ γ σ=∑ , (7) 

where 2
iDσ  represents the variance of iD . To 

determine 2
iDσ , we consider that the total number 

iN  of dopant atoms in the i th discretization cell of 
volume iV∆  is a random variable with Poisson 
distribution. Hence, we have 2

0 0iN i i iN D Vσ = = ∆ , 
where, 0iD  is the average doping concentration in 
volume iV∆ . By using this fact, we derive: 

 
2

2 2 01
i i

i
D N

i i

D
V V

σ σ
⎛ ⎞

= =⎜ ⎟∆ ∆⎝ ⎠
. (8) 

By using equations (7) and (8), the variance of 
parameter A  can be computed as follows: 

 ( )22 0i i
A A

i i

D
V

σ γ=
∆∑ . (9) 

Thus, the problem of computing the variance of 
parameter A  is reduced to the computation of 
superposition coefficients. 

It should be noted that the superposition 
coefficients are mesh dependent. Therefore, it is 
sometimes convenient to introduce the doping 
“sensitivity coefficients,” i

AS , which are defined as 
[3]: 

 
2i

i A
A

i

S
V
γ⎛ ⎞

= ⎜ ⎟∆⎝ ⎠ . (10) 

With notation (10), equation (9) reads as follows: 

 ( )22
0

i
A A i i

i

S D Vσ = ∆∑ . (11) 

 
 
3.1  Superposition coefficients of the current 
The analysis of current fluctuations is extremely 
important for both digital and analog applications. 
For the sake of brevity we will consider that 

0n p
t t

∂ ∂
= =

∂ ∂
 (steady state) and write the transport 

equations (1)-(3) in discretized form [8]: 
 ( ), 0=F X D , (12) 
where F  is a nonlinear vector function of the 
unknown “state” vector X  and doping vector D . 
The state vector consist of the mesh-point values of 
the electrostatic potential ϕ , electron and hole 

concentration n , and p , and: [ ] t=X n pϕ , 
where t  denoted the transpose of the given vector. 
Fluctuations of the doping concentration %D  induce 
fluctuations in the state vector %X  that can be 
computed by solving the following linear system: 
 ˆ ˆ 0=% %

X DF X + F D , (13) 
where ˆ

XF  and ˆ
DF  are the derivatives of F  with 

respect to X  and D , respectively. These 
derivatives are computed at the given dc bias point 
and by assuming constant (non-fluctuating) values 
of the doping concentration.  

Now, let us denote the current through the diode 
by I . In order to compute the superposition 
coefficients of I  it is convenient to write I  as a 
explicit functions of state vector X  and doping 
concentration D : 
 ( )DiodeI I= X,D . (14) 
The fluctuations of terminal current can be found by 
linearizing (14) with respect to the fluctuating 
quantities: 
 ( ) ( )t t

I I I% % %
X D= X + D , (15) 

where IX  and ID  are the derivatives of I  with 
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respect to the state variable and doping 
concentration. By solving equations (13) and (15) 
for the fluctuations of the terminal current, one gets: 

 ( )ˆ ttI I⎡ ⎤= − ⋅ − ⋅⎢ ⎥⎣ ⎦
% %

D Dg F D , (16) 

where tg  is the transpose of column vector g , 
which is the solution of the following linear system 
of equations: 
 ˆ t IX XF g = , (17) 
where ˆ t

XF  denotes the transpose of matrix ˆ
XF . By 

comparing (6) and (16), it can be inferred that the 
superposition coefficients of the terminal current are 
given by the following formula: 
 ( ) ( )ˆ ti t

I ii
I

α
γ = − ⋅ +D Dg F . (18) 

The standard deviation of terminal currents can be 

calculated now by using: ( )22 0i i
I I

i i

D
V

σ γ=
∆∑ . The 

most expensive computational task related to the 
calculation of these coefficients is to solve linear 
system (17). For 2-dimensional simulations this 
system can be solved numerically by using the 
classical Gauss-Seidel method. However, for 3-
dimensional simulations the computation time and 
memory requirements increase considerably if the 
Gauss-Seidel method is used, so other procedures 
are needed to solve (17). In our simulations, we took 
advantage of the diagonal dominance of matrix ˆ

XF  
and solved it efficiently by using the Successive 
Over-Relaxation (SOR) method.  
 
 
3.2  Superposition coefficients of the small-signal 
parameters 
In this section we introduce the technique for the 
calculation of variances of admittance matrix 
elements (i.e. variances of y-parameters). We 
suppose that one of the terminals of the diode is 
grounded, while a small-signal ac potential v  is 
applied on the other terminal. The admittance is 
defined as: 

 iy
v

= , (19) 

where i  small-signal phasor current through the 
terminals of the diode. The variance of parameter y  
can be computed in three steps: 
1. First, we solve the transport equations and find 

the dc bias point. 
2. Then, we solve the linearized transport 

equations and find the values of y-parameters. 
3. Finally, we find the superposition coefficients 

and the variances of y-parameters. 

Each of these steps is discussed below. 
 
 
3.2.1  Finding dc bias point 
The first step in the evaluation of the variance of y-
parameter is to solve the transport equations and to 
find the dc bias point of the device. To this end, 
transport equations (1)-(3) can be written in 
discretized form as follows: 

 ( ) ( ), , 0d V
dt

+ =J X F X D , (20) 

where V  is the voltage across the diode and J  is a 
vector function which depends on X  only. In 
equation (20), we have separated the explicit time-
dependent part of the transport equations (which 
comes from the terms n t∂ ∂  and p t∂ ∂  in the 
current continuity equations) from the time-
independent part F . At dc bias conditions, equation 
(20) is reduced to: 
 ( )0, , 0V =0 0F X D . (21) 
Given some doping distribution 0D  and bias voltage 

0V , equation (21) can be solved for state vector 0X . 
 
 
3.2.2  Finding the value of the admittance 
The second step is to find the values of the 
admittance. It is customary to assume that a 
sinusoidal voltage of infinitesimal amplitude v  is 
superimposes over the dc value 0V : 
 0

j tV V ve ω= + . (22) 
This will induce ac perturbations in the state 
variable: 
 0

j te ω= +X X x , (23) 
The governing equations for the ac component of 
the state variable x  can be found by linearizing 
equation (20) around the dc bias values 0X  and 0V : 

 ( )ˆ ˆ 0Vj vω + + =X XJ F x F , (24) 

In this equation, ˆ
XJ  and ˆ

XF  are the Jacobian 
matrices of J  and F  computed with respect to 
variable X  (and evaluated at the dc bias point), 

while V V
∂

=
∂
FF . In general, ˆ

XJ  and ˆ
XF  are 

3 3N N×  sparse matrices, where N  is the total 
number of mesh points. 

The current through the diode can be written as a 
function ( )I X . In the first-order approximation, the 
ac component of the current is: 
 i I ⋅X= x , (25) 
The admittance can now be computed by using: 
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 Iy
v
⋅

= X x . (26) 

 
 
3.2.3  Finding the variance of admittance 
The random doping fluctuations %D  induce 
fluctuations 0

%X  and %x  in the dc and ac components 
of the state variables, respectively. By using the 
linearization technique, one can show that: 

 0

0

ˆ ˆ ,
ˆ ˆ 0,

⎧⎪
⎨

+ =⎪⎩

% %

%%
X DF X = -F D

Ax BX
 (27) 

where the following matrix notations have been 
adopted: 
 ˆ ˆ ˆjω= +X XA J F , (28) 

 ( )
3

1

ˆ ˆ ˆ
i i

N

,X ,X i
i

j xω
=

= +∑ X XB J F . (29) 

Here: 
ˆˆ

i,X
iX

∂
=
∂

X
X

JJ , 
ˆˆ

i,X
iX

∂
=
∂

X
X

FF , while iX  and ix  

denote the i th component of vectors X  and x , 
respectively. Both matrices Â  and B̂  are computed 
at the dc bias point ( )0,V0 0X ,D . 

Once system (27) is solved for %x , we can find 
the fluctuations of admittance by using the formula: 

 0I Iy
v

⋅ ⋅
=

%%
% X XXx + X x , (30) 

where I XX  is the Hessian matrix of the current 
through the diode. The last equation is linear with 
respect to 0

%X  and %x  while, according to equations 
(27), 0

%X  and %x  are linear with respect to %D . This 
means that y% can also be evaluated as a linear 
combination of the fluctuations of doping at 
different mesh-points: 

 
1

N
i
y i

i
y Dγ

=

=∑ %% , (31) 

where i
yγ  are  the superposition coefficients of y . 

By rearranging the terms in equations (27)-(29) it 
can be shown that the superposition coefficients can 
be compute by using the following equation:  
 ( )( )ˆ ii

yγ = ⋅ Df F δ , (32) 

where, by definition, ( )iδ  is a vector whose i th 
component is one while all other components are 
equal to zero and f  is the solution of the following 
system of linear equations: 

 
ˆ

ˆ ˆ

t

t t

I ,

- I .

⎧⎪
⎨
⎪⎩

X

X XX

A g =

F f = B g x
 (33) 

The first equation in (33) must be solved for g  and 
the second equation for f . Then, the values of the 
superposition coefficients can be computed by using 
formula (32). 

The algorithm for the calculation of admittance 
matrix variances can be summarized as follows: 
(1) First, the nonlinear equations (21) are solved to 

find the dc bias conditions throughout the 
device. 

(2) Second, equations (24) are solved and formula 
(26) is used to find the values of the 
admittance. 

(3) Then, matrices Â  and B̂  are constructed by 
using formulas (28) and (29), respectively, and 
equations (33) are solved for g  and f . 

(4) Then, formula (32) is used to find the values of 
the superposition coefficients. 

(5) Finally, the variances of the admittance 
elements are found from equation (9). 

It is worth noting that the most computationally 
expensive steps in the algorithm are (1) and (2), 
which take about 90% of the total computation time. 
Steps (3), (4), and (5) take about 10% of the total 
computation time. 
 
 
4   Numerical results 
The techniques presented in the previous section 
was numerically implemented and used to compute 
the fluctuations of terminal currents and admittance 
in p-n junction diodes induced by random doping 
fluctuations. We have considered a p-n silicon diode 
with simplified architecture. Unless otherwise 
mentioned the doping concentration is assumed 
constant and equal to 1710aN =  cm-3 and 1610dN =  
cm-3 in the two sides of the junction, respectively. 
The diode extends for about 1 mµ  in the x -
direction and the cross-sectional area of the diode is 
1 2mµ . As a consequence, the results presented in 
this section should be scaled accordingly for other 
dimensions than those indicated above. 
 In Figure 1 we present the current through the 
diode by using continuous line and the standard 
deviation of the current by using vertical bars. The 
values of the standard deviations are multiplied by a 
factor of 10 in order to make the error bars visible 
on the figure. In the inset of Figure 1 we have 
represented the standard deviation of the current 
divided by the current through the diode. One can 
observe that between 1-2% of the total current 
represent fluctuations.  
 In Figures 2 and 3 we represent the standard 
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Fig. 1. Terminal current (continuous line) and 
standard deviation of the current (vertical bars) 
through the diode. 
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Fig. 2. Standard deviation of the real part of y-parameter 
divided by the real part of y-parameter. 
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Fig. 3. Standard deviation of the imaginary part of 
y-parameter divided by the imaginary part of y-
parameter. 
 

deviations of the real and imaginary parts of the y-
parameter divided by the value of that parameter. In 
both figures the doping concentration of the 
acceptor atoms is kept constant 1610aN =  cm-3, 
while the doping concentration of the donor atoms is 
varied. It is important to note that the fluctuations of 
y-parameter increase with the doping concentration 
of the junction. Similar observations have been 
drawn for the standard deviations of threshold 
voltages and terminal currents in MOSFET devices 
[7]. 
 
 
5   Conclusion 
Random doping induced fluctuations are becoming 
increasingly important in ultra small semiconductor 
devices, where the spatial scales of these 
fluctuations are comparable with the device 
dimensions. Significant deviations from the average 
values have been found for both the terminal current 
and the y-parameter. For a 21 mµ  diode with doping 
concentration of the order of 1016 the fluctuations 
represent between 1% and 10% of the average 
values of these parameters. However, the 
fluctuations increase considerable for smaller device 
dimensions. 
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