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Abstract: - A new identification technique is presented for the Density-Gradient model. This identification 
technique is based on two-dimensional Schrödinger computations and can be easily extended to three-
dimensional compuations. The model parameters are found by comparing the electron concentration computed 
by using the Density-Gradient model in nanoscale semiconductor structures to results obtained by using the 
effective-mass Schrödinger equation. 
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1   Introduction 
Parameter identification in phenomenological 
semiconductor models is one of the most important 
tasks in the modeling and analysis of a device. 
Before the model is used for the simulation of the 
semiconductor device, the model parameters should 
be carefully calibrated against more elaborate 
physical models. In the case of the Density-Gradient 
(DG) model, the electron and hole effective masses 
that enter in the equations of the DG model should 
be computed by using self-consistent Poisson-
Schrödinger computations. 
 The existing methods for the computation of 
electron and hole effective masses are based on the 
comparison of the model with one-dimensional 
Poisson-Schrödinger computations. While this 
approach gives good results for devices in which the 
carriers are confined in only one direction, it is not 
appropriate for devices in which the carriers are 
confined in more than one direction. Such devices 
include short-channel MOSFETs and SOI 
transistors, FinFETs, etc. 
 In this article we calibrate the DG model against 
two-dimensional Schrödinger computations. We 
focus mainly on the computation of electron 
effective mass since it enters directly in the 
equations of the electron current density in n-
channel transistors, which are widely used in 
integrated circuits. The article is structured as 
follows. In Section II we present the DG model at 
thermal equilibrium. The basic idea of our 
calibration approach is presented in Section III, 
which will be followed by Conclusions. 
 
 
 

2   The Density-Gradient model 
The Density-Gradient (DG) model has been 
extensively used in the literature for the analysis of 
quantum mechanical induced effects in 
semiconductor devices [1]. In the framework of the 
DG model, the electron and hole densities at thermal 
equilibrium can be computed by using the following 
partial differential equations: 
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where ϕ  is the electric potential, n  and p  are the 
electron and hole concentrations in the 
semiconductor, and ( )n TΦ  and ( )p TΦ  are some 
functions that depend on the nature of electron and 
hole statistics used. For Boltzmann statistics: 
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where T  is the absolute temperature. For Fermi 
statistics ( )n TΦ  and ( )p TΦ  should be computed 
by solving numerically the following equations: 
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where cN  and vN  are the effective density of states 
in the conduction and valence bands, respectively, 

gE  is the gap energy and refϕ  is the reference 
potential with respect to which the electrostatic 
potential is measured. In equations (5)-(6) ( )F xα  is 
the Fermi integral of order α  and is defined as: 
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Quantum mechanical effects are “controlled” by 
parameters: 
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where *
nm  and *

pm  denote the effective masses of 
the electrons and holes. nr  and pr  are dimensionless 
parameters that account for the statistics of electrons 
and holes in semiconductor devices. The values of 

nr  and pr  vary asymptotically from 1, when only 
the lowest energy subband is occupied (e.g. at low 
temperature), to 3 when other subbands become 
populated as well (e.g. at high temperature). It 
should be noted that quantum mechanical effects 
can be neglected by setting 0n pb b= =  in equations 
(1)-(2). In this case the electrostatic potential is 
given by ( ) ( )n pT Tϕ = Φ =Φ . In order to model the 
carrier distribution in semiconductor devices, 
equations (1)-(2) should be subject to appropriate 
boundary conditions and must be solved self-
consistently. More details about boundary 
conditions for equations (1)-(2) can be found in [2]. 
 
 
3   Calibration of the Density-Gradient 
model 
In the case of the DG model, parameters nr  and pr  
are unknown and should be regarded as empirical 
quantities that have to be determined by matching 
experimental data to microscopic calculations. The 
same observation is valid for the electron and hole 
effective masses. Due to the low-order 
approximations involved in the derivation of 
equations and (1)-(2), it is unrealistic to use the 
experimental values of *

nm  and *
pm . Instead, these 

two parameters should be treated as fitting 
parameters. Since *

nm  and nr , as well as *
pm  and pr  

appear in (8) and (9) as products, the identification 
method can be simplified by letting only one of 
these two parameters vary, while keeping the other 
one fixed. It is usually assumed that 3n pr r= = , so 
the calibration problem is reduced to the 
determination of the electron and hole effective 
masses. 

It should be noted that there is no unanimous 
agreement on the values of *

nm  and *
pm . In most of 

the existing methods, *
nm  and *

pm  are found by 
fitting the results obtained from the DG model to the 
results obtained by solving the Poisson and 
Schrödinger equations for long channel MOS 
devices. For example, by fitting the DG model to C-
V curves computed through one-dimensional 
simulations in MOS diodes, Wettstein et al [3] 
found *

00.278nm m= , where 0m  is the free electron 
mass. This value is in reasonably good agreement 
with the value obtained by Connelly et al [4], 

*
00.258nm m= , but it is slightly larger than the value 

obtained by Asenov et al [5] *
00.175nm m= . The 

common feature of these identification methods is 
that they calibrate nb  and pb  against results 
obtained by solving the 1-D Schrödinger equation in 
the direction perpendicular to the oxide layer (the 
z -direction) of MOSFET devices. In this way, it is 
tacitly assumed that the motion of electrons and 
holes is quantized only in the direction 
perpendicular to the oxide and it is described by 
classical statistics in the other two directions. While 
this approach is appropriate for long devices, more 
accurate methods must be developed for situations 
where quantum effects are important in the other 
two directions. For example, in the case of short-
channel MOSFET devices, the electric potential can 
vary significantly in the along-channel direction (the 
x -direction) and one expects that the electron 
motion in this direction is quantized as well. A more 
rigorous approach to the problem is to solve the 
two-dimensional Schrödinger equation in the xz  
plane and to calibrate the DG model against these 
results. An identification method for nb  that is based 
on this observation is presented below. Parameter 

nb  is found by fitting the results obtained with the 
DG model to the results obtained by solving the 
two-dimensional Schrödinger equation. In 
subsequent computations, the (100) surface 
orientation is assumed for silicon because it is 
typical for most fabricated MOS devices. 

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.132-137)



For (100) silicon, the total electron concentration 
is composed of electron concentrations in six 
elliptical subbands that correspond to two valleys 
with * *

, ,x i y i tm m m= = , *
,z i lm m=  ( i =1,2), two valleys 

with * *
, ,x i z i tm m m= = , *

,y i lm m=  ( i =3, 4), and two 

valleys with * *
, ,y i z i tm m m= = , *

,x i lm m=  ( i =5, 6). In 

the above formulas, *
,x im , *

,y im , and *
,z im  denote the 

principal effective masses of the constant-energy 
ellipsoid in subband i , associated with the motion 
parallel to the x , y , and z -direction, respectively, 
and 00.19tm m=  and 00.916lm m=  are the 
transverse and longitudinal effective masses of 
electrons. As previously argued, the electron motion 
is quantized in the x  and z  directions and it is 
described by classical statistics in the y -direction. 
In the effective mass approximation, the electron 
energy can be described by the time-independent 
Schrödinger equation: 
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 ( ), , ,i j i jE x z= Ψ , (10) 

where ( ),c x zϕ  is the confining potential in the xz  
plane measured with respect to the conduction band, 
while ( ), ,j i x zΨ  are the envelope wave functions 
associated with the j  eigenvalue  in subband i 
( i =1,..,6), ,j iE . Once the eigenvalue problem (10) is 
solved, the electron concentration can be computed 
by summing over all energy states: 
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where ( ),i jf E  is the Fermi distribution function and 
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is the one-dimensional density of the states 
corresponding to electrons in subband i  and energy 
level j . After performing the integration in (11), we 
obtain the following equation for the total electron 
concentration [6]: 
 ( ),n x z =  
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where FE  is the chemical potential that at room 
temperature is approximately equal to the Fermi 

energy and ( )1 2F x−  is the Fermi integral of order 
1 2− . 

 
 
Fig. 1. Effective mass of electrons as computed 
from the Density-Gradient equation (1) and the 
Schrödinger equation (10) for Si(100).  
 

In order to find parameter nb , arbitrary (100) 
silicon systems were simulated by using the two-
dimensional DG model and the two-dimensional 
Schrödinger equation. To avoid solving the Poisson 
equation many times, we assumed that the potential 
in equations (1) and (10) is given a priori and we 
compared the electron concentration distributions 
obtained by using these two equations. Parameter 

nb  was found by using the best fit between the two 
electron concentration functions. 
 
 
3.1  Analytical solution for *

nm  
A special case in which the energy eigenstates can 
be found analytically is the two-dimensional 
rectangular quantum box with infinite walls. In this 
case, the electrostatic potential can be written as 
follows: 
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while the energy eigenvalues and eigenfunctions 
are: 
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Electron concentration ( ),n x z  can be computed by 
using equation (11). 
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(a) 

 

 
(b) 

Fig. 2. Electron concentration computed by using 
the Density-Gradient model (a) and the Schrödinger 
equation (b) for a 10× 15 nm rectangular box. 
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Fig. 3.  Electron concentration cross-sections 
through the middle plane of a 10x15 nm rectangular 
quantum box. 
 

It is remarkable that, in the case of a rectangular 
box, one can find analytical equations for the 
electron effective mass. If we assume that ( ),nb x z  
varies relatively slowly with x  and z  [in fact the 
DG model predicts that nb  is constant—see 
equation (8)] and by using the first-order 
approximation one can find that: 

 ( )
( )( )
2
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2

n
n

n T
b x z

n

ϕΦ −
≈

∇
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In Figure 1 we have represented the electron 
effective mass computed by: 

 ( ) ( )
2

* ,
4 ,n

n n

ћm x z
r qb x z

=  (18) 

for a rectangular box with dimensions 6× 10 nm. 
One can observe that *

nm  depends on the spatial 
coordinates. It can be approximated by 

( )*
00.17 0.01nm m= ± , which is the value computed 

in the middle of the box. 
In Figures 2(a) and 2(b) we have represented the 

electron concentrations in the quantum boxes 
computed by using *

00.17nm m= . In Figure 3 we use 
continuous lines to represent cross-sections through 
the middle plane ( x  = 6 nm) of the electron 
concentration, for different values of electric 
potential 0V . The values of 0V  displayed in Figure 3 
correspond to the Fermi levels in bulk silicon with 
doping concentrations of 16 310 cm− , 17 310 cm− , and 

18 310 cm− , respectively. The agreement between the 
electron concentrations obtained by using the two 
approaches is remarkably good and proves that the 
DG model can be successfully used for the 
modeling of electron and hole concentration in 
silicon. 

It is instructive to note that, in general, the x  and 
the z  directions in the Schrödinger equation are not 
equivalent (e.g. in anisotropic systems) due to the 
different effective mass values in the expression of 
the Hamiltonian [see equation (10)]. These systems 
can be modeled in the framework of the DG model 
by using different values for the fitting parameters 

nb  and pb  along the two directions. This requires 
calibrating the electron and hole effective masses in 
both directions, which is a more complicated task. 
Fortunately, in the case of Si, the x , y , and z  
directions are equivalent because of the symmetry of 
the six valleys in the conduction band, and we can 
consider equal effective masses in these directions 
(denote them by *

nm ). 
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Figure 4 presents the computed values of *
nm  for 

different dimensions xL  and yL  of the quantum 
region. The continuous line shows the results 
obtained by keeping yL  at 15 nm (which is 
approximately the length of the  
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Fig. 4. Electron effective mass that gives the best 
agreement between the electron concentration 
computed by using the two-dimensional 
Schrödinger equation and two-dimensional DG 
model for a rectangular quantum box. The 
dimensions of the box are indicated on the abscissa. 
 
 
conduction channel in ultra small MOSFET devices) 
and varying xL  from 3 nm to 10 nm. The dash line 
shows the values of the electron effective mass in 
the case when xL  and yL  are equal to each other 
and varied between 3 and 10 nm. We can observe 
that, for dimensions of the quantum box larger than 
8 nm, the electron effective mass is almost constant 
and approximately equal to 00.17m , which is in 
agreement with the simulations presented in Figure 
1. For smaller dimensions of the quantum box, the 
value of *

nm  should be changed. For example, if one 
dimension of the quantum box decreases to 3 nm 
while the other one is larger than 8 nm, 

*
00.24nm m; . In numerical simulations one should 

use the value of the electron effective mass which 
corresponds to the approximate size of the quantum 
region. 

The electron concentrations obtained by using 
the DG model and the Schrödinger equations are 
represented in Figures 4(a) and 4(b) respectively. 
One can observe again that there is a very good 
agreement between the two methods. 
 
 

 
(a) 

 
(b) 

 
Fig. 5. Electron concentration computed by using 
the Density-Gradient model (a) and the Schrödinger 
equation (b) for a 10× 15 nm rectangular box. 
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Fig. 6.  Electron concentration cross-sections 
through the middle plane of a 10x20 nm rectangular 
quantum box. 
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3.2  Calibration of *
nm  for custom electric 

potentials 
We also computed *

nm  for other potential functions 
and obtained very good agreement between the 
predictions of the DG model and of the two-
dimensional Schrödinger equation. In these 
simulations, the Schrödinger equation was 
discretized by using the finite difference scheme and 
the eigenvalues and eigenfunctions of the energy 
were computed by using the LAPACK package [7]. 
In most cases, grids of 70 70×  points were used, 
resulting in computation times of about three hours 
on a Pentium 4 (3 GHz) processor. These 
computation times should naturally be compared 
with the computation time required to find the 
electron concentration by using the DG model and 
which, in our simulations, is of the order of seconds 
on the same processor. Figure 5 (a) illustrates the 
electron concentration computed by using the 
Schrödinger equation with the following electric 

potential ( ),x zϕ = 0 1 exp
x

axV V
L

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
2 exp

z

bzV
L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 if 

10x <  nm and 20z <  nm, and ( ),x zϕ = ∞ , 
otherwise. In the last equation, 0V , 1V , 2V , a , and 
b  are given parameters. In these simulations we 
used: 0V = 348 mV, 1V = 0.12 mV, and 2V = 1.2 mV, 
a =4 nm, and b =2 nm. The dimensions of the 
quantum region were 10 20×  nm. This potential 
was chosen because it varies significantly in the box 
region and, in this way, it may reveal the ability of 
the DG model to describe electron concentrations 
for a broad class of potentials. The electron 
concentration computed by using the DG model is 
shown in Figure 5 (b).  

In Figure 6 we use continuous lines to represent 
cross-sections through the middle plane ( x  = 5 nm) 
of the electron concentration, for the same values of 
the electric potential 0V  as in Figure 3. The good 
agreement between the Schrödinger and the DG 
calculations suggests once more that electron 
concentration can be accurately described by the DG 
model, provided that one performs proper 
calibration of the electron effective mass. 
 
 
4   Conclusion 
The parameters of the Density-Gradient model are 
carefully calibrated against Schrödinger 
computations. It is shown that the electron density 
can be reproduced accurately in two-dimensional 
quantum boxes with dimensions over 10 nm by 

using the Density-Gradient model with the electron 
effective mass around 00.17m . However, if the 
quantum box is smaller the electron effective mass 
might increase or decrease as a function of the shape 
and dimensions of the box. The values obtained for 

*
nm  are close to the transversal effective mass of 

electrons in silicon, which is in agreement with the 
fact that most contribution to the electron 
concentration in the conduction band is given by 
electrons with lower effective masses. 
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