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Abstract: - The trend to higher systems complexity while requiring enhanced reliability increases the interest in using 
model based fault diagnosis methods. As a sufficiently good modeling of complex plants can be very demanding or 
even impossible, data based methods are being widely used, but the computational time and the quality can still be too 
poor for reliable fault detection. In this paper, we propose an iterative multilayer approach, which is characterized by 
two elements: fault detection and fault isolation consist of sequentially triggered cascaded processes, whose speed and 
quality rely on dynamical modeling abilities. The presented methods have been developed in the framework of an 
industrial project in the field of engine test benches, from which examples are shown. 
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1 Introduction 
Early fault diagnosis (FDI) is a critical issue for many 
industrial or commercial applications, especially for 
large measurement systems, as in process, steel or 
chemical industry, but also for specific components, as 
in the automobile industry. As FDI relies based on 
models, and models are often difficult to obtain, a 
substantial effort has been performed to obtain and to 
use automatically models for data plausibility (see e.g. 
[1,2]). This effort has been extended also to fault 
detection in the context of engine test benches, e.g. by 
[3,4], as well as fault isolation in large measurement 
systems e.g. by [5]. An important question is also the 
reliability of the modeling process. The robustness in 
modeling uncertainties is discussed i.e. in [6], where the 
authors addressed the problems of the measures of 
detectability as well as the determination of thresholds 
for fault detection and isolation. 

Modern complex systems are characterized by a high 
number of measurement channels, and the measurement 
process itself produces a large amount of data, which are 
not likely to be analyzed in any other way than 
automatically. This, however, can be a very difficult 
task, due both to the unknown functional relationships as 
well as to the possibly insufficient data richness. 

A key concern is the computational complexity 
which can be reduced if a systematic approach to 
modeling and fault diagnosis is adopted. If only simple 
models of the measurement system are used, the fault 
diagnosis system can become inefficient due to inability 
to detect smaller variances of observed variables. If the 
goal is to use only complex but very accurate models, 
the fault diagnosis can be very slow and unusable in real 
time. Therefore, there is a need to restrict the modeling 

and to use simple models at the beginning of the fault 
diagnosis process, and then to continuously increase the 
complexity of models in the next steps, until the 
acceptable trade-off between model complexity, 
computational performance and fault diagnosis results is 
reached. 

This idea lies behind the work related in this paper in 
which we present a new approach which combines 
flexibility and efficiency. This consists first in 
processing the measurements to have a basic fault 
detection statement, whose quality is then improved 
iteratively building up models-on-demand with the 
available measurements. The proposed approach was 
proven in practice to be efficient and precise, flexible 
and capable of learning.  
 
 
2   Problem Statement and Basic Solution  
We consider here complex systems (with several 
hundreds channels), no a priori known models and 
“sufficiently rich” data. As such systems are often used 
to monitor industrial plants, we look for a solution able 
to detect reliably even small anomalies in real time. Such 
a combination - fast but accurate – is usually impossible 
for many real plants. In order to fulfill both requirements 
we propose a multilayer fault diagnosis system, with 
each layer being tuned to satisfy either speed or 
precision demands. 

Fig. 1 shows schematically such a system with 
several FDI levels. The first (fast) fault detection block 
is designed to be simple and fast, to run continuously, to 
analyze all available data from the data stream and to 
minimize the number of missed detections, even if the 
over-detection rate increases. The second  (precise)  fault  
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Fig.1.  Scheme of a multilayer fault diagnosis system. 
 
detection block is triggered by fault detection(s) from the 
first FD block, and is designed to “filter” as much as 
possible the cases of overdetection from the first block 
and then to focus on the measurement channels likely to 
contain a measurement or process fault. The fault 
detections which are still present after the second FD 
step trigger the fault isolation block, which produces the 
FDI statement.  

The fault isolation step relies first on the use of the 
original models, which, however, may not contain the 
adequate “orthogonal” information required to separate 
channels. For this reason, an iterative “Model on 
Demand” (MoD) procedure has been used, which uses 
the original full data set not to determine the existence of 
a failure but to locate it.  
 
 
3   Algorithmic structure  
Fig. 2 shows the basic steps necessary to complete FDI 
in a complex measurement system. The process shown is 
very general, and can be applied to any test facility. The 
procedure includes four basic steps: data acquisition, 
data preprocessing, modeling and fault diagnosis.  
 
3.1. Automatic Data Preprocessing 
The preprocessing step is designed to extract information 
from data and includes steps like removing trends and 
drifts, outliers and other disturbances, dealing with 
missing portions of data (reconstruction of data), 
prefiltering of data and data segments selection. This 
phase is critical for the later performance: a simple 
prefiltering of data influences directly the fault diagnosis 
statement (see e.g. in [8]). Preprocessing can include as 
well other functions like down-sampling, time-delay 
estimations and detection of redundant channels. This 
can have a twofold advantage; it can be used to reduce 
the search space, but can also be used for fault detection. 
Data segments selection seems to be of particular 
importance for the structural identification of models. 
The selection can be done according to different criteria, 
but the determination of steady-state segments has been  

 
 

Fig.2. Automatic data plausibility check (fault diagnosis 
procedure). Basically, the complete fault diagnosis 
procedure consists of four basic steps: data acquisition, 
data preprocessing, modeling and fault diagnosis. 

 
found to be quite useful if a two step modeling 
procedure (first static then dynamic maps) is used.  

At the end of the data preprocessing step, the original 
data set is divided into three subsets containing 
stationary data clusters, transient data clusters and data 
without information. The data without information are 
usually omitted from the following steps. 
 
3.2. Automatic Modeling 
A systematic overview of modeling methods used for 
fault detection is given e.g. in [2]. 

Theoretically, a model of the target channel yi can be 
made using all other channels considered in the 
diagnostic system, or formally: 

 

)~,...,~,~,...~,~,...,~,~(ˆ 11121 mniii uuyyyyyfy +−=                (1) 
 

However, since this approach would lead to complex 
models, in practice the case is that only several of other 
channels considered by the diagnostic system are 
actually used for modeling of the target channel. The 
selection of the model structure (or the structural 
identification) plays the key role in automatic modeling 
and data plausibility check. 

From a practical point of view, every automatic 
modeling procedure must be seen as an approximation 
with two targets: represent correctly the actually known 
values and extrapolate as correctly as possible the future 
values. Such an aim can be reached by three steps: 
1) Information sorting 

As the first step, for each sub-model of the system 
(for each target channel), information sorting is 
performed, in order to identify the most relevant 
measurement channels for that sub-model. Only a 
number of the most relevant measurement channels 
are retained to form the model input structure.  
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2)  Parallelizing 
A model of the process is considered to be a 
collection of sub-models. Each sub-model is 
considered as a model with one output and, at first, 
an unknown number of inputs. The models are built 
automatically, and different modeling methods are 
applied. As a result of the parallelizing step, several 
models with different structure of a single 
measurement channel can be made. Note that the 
parallelizing step allows forming of analytical 
redundancy, an important feature for fault diagnosis. 

3)  Evaluation 
A decision subsystem is used to select models from 
the pool of models, which have appropriate 
characteristics to be used in the fault diagnosis 
process.  

 
3.3. Quantitative Measure of Model Quality 
In the case of models with learning properties, the 
evaluation of the model quality is performed 
continuously. 

The selection of the models is based on several 
criteria. Three of them can be taken as important ones 
for the purpose discussed in this paper: 

 training data requirements; 
 model (computational) structure; 
 model accuracy. 

There exist several different ways to quantitatively 
measure the quality of the modeling process [10]-[14]. A 
standard approach includes discussion of the model bias 
and variance [10]. Bias error is the reflection of the fact 
that the observed system is not within the chosen model 
structure, while the variance error is a consequence of 
the noise corruption of observed data. The total model 
error is therefore given as: 
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where bias and variance errors are given as: 
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In equations (2) and (3), [ ]E ⋅  represents the expected 
value, while 2 ( )Varεσ ε=  denotes the variance of the 
irreducible modeling error ε, ( )i iy f X ε= + . 

Based on the total model error, the quality of the 
resulting model can be measured by a mean-square error 
criterion, where the bias contribution and the variance 
contribution can be split [7]: 
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A critical place in the present system identification 
theory is taken by the so-called bias/variance tradeoff. In 
[10] the authors suggest that the bias error drops with 
increasing model order, since the generality of the model 
structure is increased. In [7] the author suggests reducing 
the bias by employing larger and more flexible model 

structures, requiring more parameters, but having the 
increase of the variance, since it typically increases with 
the number of estimated parameters. The bias / variance 
tradeoff can be formalized as a minimization of (4) with 
respect to the model structures. A slightly different 
approach was taken in [12], where the quality of the 
model is estimated using Variance Accounted For (VAF) 
function, defined as: 
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where SN denotes variance function. Note that using 
VAF it is possible to obtain a statistical judgment of a 
model quality (only the model output is used), not 
considering the actual model structure. 

The estimation of model quality is not a simple 
problem. The difficulties can appear when there is 
significant difference between training and test data sets. 
A portion or the complete test data set can belong to a 
process operational range which is poorly covered by the 
training data set. Thus, the model quality calculated on 
the basis of the training data is not representative and 
can not be used in the process of automatic data 
plausibility analysis. In those cases a possible solution 
can be extended or weighted model quality:  

 

iWi QWQ ⋅=                                     (6) 
 

The model quality can have double function: as a 
criterion for automatic selection of the appropriate 
modeling method, then to set achievable bounds of fault 
detection (and respectively of fault isolation), and can 
also be used to automatically set fault detection 
thresholds. In this paper the model quality is used as a 
measure of the model suitability of data based models 
which are to be used for prediction of the modeled 
process, as well as to automatically set thresholds for 
fault detection: 
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where n is a multiplicative factor, in most cases between 
2 and 3, and Var denotes the variance function.  
 
3.4. Achievable limits of fault detection 
The key point for the definition of achievable bounds of 
fault diagnosis is the question of the faults propagation 
through (large) measurement systems and also through 
modeling systems. 

Using standard approach for analysis of the faults 
propagations through measurement systems given in 
[16], as well as the model quality estimation (5) and the 
results from [8], it is possible to derive the following 
condition for a minimum process fault in the observed 
measurement channel yi which can be detected: 
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where are: 
ξi – minimum process fault of the target variable (i-th 
measurement channel) possible to detect, ξi ∈[0,1]; 
Qi - model quality of the model of the target variable (i-
th measurement channel), calculated as VAF, Qi∈ [0,1]; 
ζ - sensor accuracies (given by producers) in form of 
maximum error of current measurement; meaning of 
indexes: i - target variable; j - system outputs; k - system 
inputs (actuators), ζ ∈[0,1]. 

The equation (8) can be used to set model dependant 
thresholds for fault diagnosis (in particular, for fault 
detection). Since information about sensors accuracies ζ 
are normally available, and if a minimum process fault 
to be detected is defined, it is possible to bound the 
necessary model quality: 
 

),(      ),( min iiii gQQf ξζζξ ≥⇒≥                        (9) 
 

This information can be used in selection 
(discrimination) of available models for fault diagnosis 
(in particular for fault detection). 
 
3.5. Algorithm of iterative multilayer fault 
diagnosis 
The main idea of the Model-on-Demand (MoD) process 
for fault diagnosis is sharpening of the FDI statement 
through reduction of the problem order on one side, and 
through iterative increase of model suitability (in terms 
of model quality and model orthogonality) to describe 
the modeled process on another.  

Fig. 3 schematically illustrates this idea, presenting 
how the complexity of a fault diagnosis problem is 
expected to change during the fault diagnosis process. 
The first step includes preprocessing and information 
sorting, and it usually results in identification of 
redundant measurement channels and measurement 
channels which does not carry any information useful 
for the fault diagnosis process. Those channels can be 
omitted, what immediately results in reduction of the 
problem complexity. Even simple modeling procedure, 
like using redundant measurement channels or simple 
expert models, can produce models with enough quality 
to be used in fault diagnosis. After the first fault 
diagnosis a (simple) fault diagnosis statement is 
obtained. The results of the first fault diagnosis 
statement allow some additional measurement channels 
to be omitted, reducing further the complexity of the 
problem. The sophisticated modeling  (the fourth step) is 
generally of higher complexity than the simple 
modeling, but it will never overrun the complexity level 
set after the first fault diagnosis. The second fault 
diagnosis can produce the final fault diagnosis 
statement, but if necessary the process can be continued 
until a satisfying fault diagnosis output is reached. 

In each modeling step the MoD procedure can be 
applied, as shown schematically in Fig.4.  

 

 
 

Fig.3.  Complexity of a fault diagnosis problem versus steps 
in fault diagnosis. 

 
The model structure for the MoD step is derived from 

both the results of the preprocessing and variable 
selection steps and from the results of the previous fault 
diagnosis step. In the modeling process the models are 
selected on the basis of a quantitative criterion, like for 
example model quality. In the previous section we 
suggested that the minimal required model quality can 
be established for each single fault diagnosis problem. 
To reach that lower limit, several methods can be used: 

 by influencing the structure of the model. (in most 
of the cases increasing the number of channels 
involved in models, or by selection of the basic 
mathematical functions in some grey-box 
models); 

 by proper choice of static or dynamic, linear or 
nonlinear models; 

 by increasing the measurement sample rate (in 
some of the cases). 

The MoD process for each modeled variable is 
stopped when the required minimum model quality is 
reached or when there is no further significant increase 
in the model quality. The increase of variance of 
prediction can be used as auxiliary stopping criteria. The 
prediction is based on the model derived from the 
training data, but calculated using the test data. If the 
increase of the variance of the prediction is significant, 
the MoD process should be stopped. 

The next step requires setting thresholds for FD and 
FI, having in mind the characteristics of the 
measurement system as well as the characteristics of the 
improved models. Results obtained after all levels of 
fault diagnosis form the final fault diagnosis statement. 
 
 
4   Experimental results 

The experimental data set originated from an engine 
test bench, describing the operation of a commercial 
BMW 320D car engine on a complex test bench. This 
work was performed inside a European project (AMPA). 
Due to the usual measurement methodology, only the  
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Fig.4.  The process of modeling which utilizes the Model-on-
Demand, a sophisticated modeling with pre-defined 
parameters. 

 
stationary points are measured, and then the recorded 
dynamic data were averaged, producing one value per 
each measurement channel and each stationary point. In 
order to test the fault diagnosis, a total of 9 different 
artificial faults were introduced in the test data set, 
affecting the total of 10 measurement channels. The 
artificial faults were chosen in such a way to reflect the 
real faults.  

Fig. 5 shows the results of the first level of fault 
diagnosis process (fault detection and isolation), which 
includes simple modeling and weighted fault isolation 
[3], [5]. In the first level of fault diagnosis, 7 of 9 
artificial faults (affecting 8 measurement channels) were 
detected and (at least partially) isolated. (The isolated 
measurement points are shown in black.) The isolation in 
the measurement channel No.8 was essentially wrong, 
since that channel did not contain any known artificial 
fault. Two faults were not detected:  

 temperature TA was approx. 30% higher than normal 
(measurement channel No.20, measurements 15-28, 
simulates a sensor calibration error); 

 
 

Fig.5.  Fault isolation matrix for the BMW 320d data set after 
the first level of fault diagnosis (using simple modeling). 

 
 temperature TIA was approx. 20% lower than normal 

(measurement channel No.25, measurements 75-90, 
simulates a leakage of intake air). 

The fact that two faults were not detected is an 
important aspect of such methods. The model buildup 
happens in real time together with the diagnosis, i.e. the 
information basis can be too small to detect early 
occurring errors. Furthermore, the measurements come 
in as they use to, and, as a consequence, the information 
and model build up is not homogenous. A further 
possible cause can be found in the fact that changes not 
present in the training data will not be detected. All  this 
is not detrimental of the presented approach: perfect fault 
detection and zero overdetection in large and essentially 
unknown systems is clearly impossible, and this paper 
presents only results for single event - single channel 
faults - a clearly extreme situation, as usually faults 
affects several channels and last more than one sample. 

After the first level of fault diagnosis the artificial 
fault in channel TA was only partially detected and 
isolated. Fig. 6 shows the result of the variable selection 
for the channel TA. It has been shown that 10 most 
influencing channels (inputs) contain almost the whole 
necessary information, but also the five most influencing 
channels will lead to a satisfactory model, which allows 
significantly better fault diagnosis results, after the 
second iteration step (MoD) has been performed. Similar 
situation was also with the channel TIA, which was 
marked as “unchecked” after the first iteration step. 
Using a model with first six relevant channels as model 
inputs, it was possible to detect the artificial fault in 
channel TIA. 

Fig.7 shows the regions of the fault isolation matrix 
where two the previously discussed artificial faults are 
introduced. As it can be seen now, it was possible to 
detect and isolate the artificial faults in channels TA and 
TIA, improving the overall fault diagnosis statement. 
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Fig.6.  Result of variable selection for measurement channel 
TA as the target channel. The relevance search was done 
using the stationary data clusters hypothesis.  

 
 
5   Conclusions 
The automatic multilayer iterative approach to fault 
diagnosis in complex systems presented in this paper 
offer a good compromise between fast and precise fault 
diagnosis. The drawback of the proposed approach is the 
need to compute up to several hundreds of models, some 
of them being high dimensional, in the search phase, as 
it cannot be forecasted in advance which model will 
yield the necessary identification information. Some 
additional work on optimization will be necessary to 
reduce this effort.  
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