
Moving Objects Management System Supporting Location Data Stream

KYOUNGHWAN AN, JUWAN KIM
Telematics•USN Research Division

Electronics and Telecommunications Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350

Republic of Korea

Abstract: - Recently, the need for LBS (Location Based Services) is increasing due to the widespread of mobile
computing devices (e.g. PDA, cellular phone, and notebook computer) and positioning technologies (e.g. GPS and
RFID). In LBS, there are many applications that need to manage moving objects (e.g. taxies, persons). The MODB
(Moving Objects DataBase) usually are used for the purpose of managing the moving objects. However, MODB
only supports pull-based queries, although push-based queries are necessary for the monitoring application which
is one of the important applications of LBS. In this paper, we extend functionalities of MODB to support push
based queries. To achieve this goal, we suggest new data model, query language, and architecture.

Key-Words: - LBS, location based services, moving objects database, data stream

1 Introduction
Location Based Service (LBS) is any product, service,
or application that uses locations of things or people to
provide value added information. The services are
enabled by mobile devices (e.g. PDA, cellular phone,
notebook computer, etc.), wireless communication,
and positioning technologies based on mobile network
or GPS. Since the infrastructures previously
mentioned are wide spread already, LBS will be more
prevalent in the future. The examples of LBS are a
buddy finder service to find a location of a friend, a
navigation service to provide routing information to a
driver, L-commerce to advertise goods based on
customer’s location, and “E911” service for
emergency calls.

To implement those applications, DBMS should
be able to support the following functions. First, it
should provide a function to retrieve the locations of
“moving objects”. The locations include past
trajectories or the locations of current/near future of
the moving objects. Second, it should support
triggering function. The triggering means that
predefined action is performed when given condition
becomes satisfied. The typical condition is “Enter”,
“Leave”, and “mobile station available”. The major
applications of the triggering are L-commerce and
traffic monitoring application. Third, input monitoring
function should be applied. Since the reports of the
locations can be enormous, several methods such as
input rate control or filtering or approximation are
necessary in the input of the system.

To satisfy the previously mentioned
requirements, we can consider several approaches.
The first approach is to use the traditional disk resident
relational DBMS by extending additional
functionalities. However, it has several problems. In
general, there are enormous numbers of “moving
objects” to be managed and queried. Since the moving
objects may report their locations frequently, a
database system should be able to handle a huge
number of updates and queries quickly. However,
traditional disk resident relation DBMS cannot handle
the updates and queries efficiently. Even more it does
not support data model, query language, and
spatio-temporal operator specific to handling moving
objects. It means application developer should
concern all the things to update and retrieve the
locations.

The second approach is to use the moving
objects database systems (hereafter MODB) that are
studied in [1, 2, 3, 4, 5, 6, 8]. They provide data model,
query languages related to managing moving objects.
They concentrate on the pull-based queries, which
mean query results are generated when they are
requested. They, however, do not provide push-based
queries, which mean query results are asynchronously
generated after a query is registered. Since the
push-based queries are used when implementing the
triggering function, MODB can not support full
functionalities that are necessary for LBS.

The third approach is to extend DSMS (Data
Stream Management System) [7, 9, 10, 11]. DSMS
concentrates on the push-based queries, called

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp99-104)

continuous query. However, since the previous studies
do not address spatio-temporal related problems, it is
difficult to apply DSMS without modification.

To cope with the problems of the previous
approaches, it is reasonable to add the functionalities
of DSMS to MODB. MODB can support pull-based
queries while DSMS can provide push-based queries.
In this paper, we designed new query language (DDL
and DML), and suggest the architecture of MODB
supporting location data stream. In this paper, we call
the report of a moving object as location data when the
data is used for pull-based queries. We call the report
as location data stream when the data is used for
push-based queries. The property of data is
determined when table is created by using DDL.
Hybrid architecture of two types of system can satisfy
the requirements we suggested.

The remainder of this paper is organized as
follows. In section 2, we explain related works. In
section 3, we compare MODB and DSMS in more
detail. In section 4, we suggest moving objects
management system supporting location data stream
and finally we conclude in section 5.

2 Related Works
In this section, we examine related studies of MODB
and DSMS. Although DSMS does not support
spatio-temporal functions, we explain main
characteristics relevant to our goal.

2.1 MODB (Moving Objects Management

System)
Moving objects database concerns storing and
processing the locations of continuously moving
objects. The extensive works were done in
DOMINO[4, 5, 6] and CHOROCHRONOS
project[8].

The challenge of MODB is to provide data
model and query language that can handle the
locations of moving objects efficiently. There are two
types of approaches. The first is to model past
trajectories of the moving object, which store
coordinates and timestamp of the moving objects[2].
In this model, spatio-temporal operator and trajectory
related operators are provided[1]. To process queries
efficiently, R-tree variants such as STR-tree or
TB-tree are used[2]. The second model is to find the
current location or to predict the future location of the
moving object, which stores start point and velocity
vector[3]. In this model, access methods such as

TPR-tree or TPR*-tree are used[3]. The previous
study[4] suggested FTL query language to retrieve
locations of moving objects.

2.2 DSMS (Data Stream Management

System)

In the case of DSMS, there are several data stream
prototypes. STREAM prototype[9] developed CQL
(Continuous Query Language) supporting
management of data stream. TelegraphCQ
prototype[10] also introduces StreaQuel, which
extends semantics of relational operators to streams.
The query language also support window that
specifies part of the stream to approximate or clarify
semantic of the result. AURORA prototype[11]
follows the data flow paradigm that enable users to
define the flow of data stream. Currently, there are no
data stream prototypes that support spatio-temporal
related functions. The following figure shows typical
structure of DSMS[7].

Fig.1. Structure of DSMS

An input monitor controls the input rates or support
filtering functions to keep up. Data stream are stored
in working storage for window queries, and stream
synopses are stored in summary storage. Meta data are
stored in static storage. Continuous queries are
registered in query repository, and processed by query
processor. Since results can be streamed to users,
output buffer is used.

3 MODB vs. DSMS
In this section, we compare MODB with DSMS. Table
1 summarizes functionalities of each system.

Table 1. Supported Functionalities

Required
Functionalities MODB DSMS

Spatio-temporal O

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp99-104)

data model
Nearest-neighbor

query O

Range query
(Spatio-temporal) O

Past query
(Trajectory) O

Future query
(Future Location) O

Spatio-temporal
operator O

Trajectory
operator O

Window O
Continuous query O

Streamed
Input/Output O

Since MODB focuses on the spatio-temporal
properties of the moving objects, it provides plenty of
constructs to process locations of the moving objects.
To the contrary, DSMS focuses on processing data
stream which is typically assumed unbounded. In this
paper we combine the functionalities of MODB and
DSMS to achieve our suggested requirements.

4 MODB Supporting Location Data
Stream

4.1 Data Model
In the real world, moving objects like car show
continuous movement. However, the continuous
movement can not be represented in the database.
Thus the movement should be sampled discretely and
interpolated between sampled locations.

To track the past movement of the moving
objects, we suggest several data types shown in table 1.
In table 1, x and y means 2-dimensional coordinates of
moving objects. The type MPoint is the most
frequently used data types for modeling the moving
objects. Cars can be modeled as a point at a specific
time. As the time progresses, the time value and
geographic coordinates are accumulated in MPoint.
The semantic of the other data types can be easily
interpreted without confusion. To use these data types,
the moving objects should report the time value and
the geometry simultaneously.

Table 2. Data Types for the Past Locations

Type Well Known Text
MPoint MPOINT (t, x, y, t, x, y, … …)

MLineString MLINESTRING ((t, x, y, x, y,
…), (t, x, y, x, y, …) …)

MPolygon
MPOLYGON ((t, (x, y, x, y,

…),(x, y, x, y, …)), (t, (x, y, x, y,
…), (x, y, x, y, …) …) …)

MultiMPoint MULTIMPOINT ((t, x, y, t, x, y,
…), (t, x, y, t, x, y), …)

MultiMLineStri
ng

MULTIMLINESTRING (((t, x,
y, x, y …), (t, x, y, x, y …)), ((t, x,

y, …),…))

MultiMPolygon

MULTIMPOLYGON ((((t, (x,
y, x, y …), (x, y, x, y …)), (t, (x,

y, x, y …), (x, y, x, y …))…),
(((t, (x, y, x, y …), (x, y, x, y

…)), (t, (x, y, x, y …), (x, y, x, y
…))…))

MGeometryColl
ection

MGeometryCollection
((t,(Geometry)), (t,(Geometry)),

…)

To query the current and future locations of the
moving objects, the different data modeling is
necessary. The future location means the location
should be anticipated and calculated. To model the
future location, we use a vector approach. For example,
x or y coordinate can be computed by the following
formula.

x = a + vt

The a means the current x coordinate, v means the
speed of the x direction, and t means the time to be
input to the query system. To make it possible to query
the current and future location of moving objects, the
moving objects should report their current location,
speed, and direction. Also they report the values
whenever they change their speed or direction over the
specified threshold.

4.2 Query Language
We suggest query language for DDL and DML. In
DDL, we can specify properties of location data
stream when creating tables, and register continuous
queries. In DML, we can provide data stream related
syntactical constructs besides constructs of MODB.

 DDL (Data Definition Language)
We provide two kinds of CREATE statement. To
enable continuous queries, the CREATE statement

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp99-104)

should have additional constructs. Since internal
structure is different from location data stream and
normal location data.

The first syntax supports pull based queries. The
overall syntax is similar to the traditional syntax.
However, the developer should use the data types
specific to the moving objects. If the purpose of the
creation is to store the past trajectories of the moving
objects, new constructs like “MIGRATE” or
“PURGE” can be used. “MIGRATE” is applied to the
so-called main memory DBMS. It means the
trajectories migrate from memory to disk according to
the given condition. “PURGE” is similar to
“MIGRATE”. It means the part of the trajectories
should be removed when the given condition is met.
The following shows the syntax of DDL for the
creation of the table.

CREATE TABLE <table_name>
({ColumnDefinition}[,……]
[,TableConstraints]
[, MIGRATE (TIME|SPACE) (MigrateConstraint)]
[, PURGE (TIME|SPACE) (PurgeConstraint)]);

Example1 shows the creation of the table using
“MIGRATE”. The table truck has the field called
position, which is the MPOINT type. Also it maintains
trajectories only for 30 days. After the migration,
query processor should be able to process queries on
the trajectories both in main memory and disk.

Example1)
CREATE TABLE truck
(id INT, position MPOINT,
 MIGRATE TIME 30 days);

Example2 shows the creation of the table using
“PURGE”. The trajectories in the table car are
automatically deleted when it exceeds 100MB. When
the migration occurs, meta data should be maintained
to notify users of the fact that there were trajectories
but they were deleted.

Example2)
CREATE TABLE car
(id INT, position MPOINT,
 PURGE SPACE 100MB);

The second syntax supports push based queries. The
syntax includes new syntactical constructs such as
STREAM, ARCHIVE, and SOURCE. The STREAM
means this table supports push-based queries. If a table

is defined using this construct, the table becomes
append-only. The ARCHIVE construct determines
whether to delete processed data or not. If DISCARD
construct is selected, queries referencing past data are
not supported. If STORE construct is selected,
MIGRATE or PURGE condition can be specified.
Data stream can be added by using INSERT statement
or by defining user-defined functions. The SOURCE
construct is used to map user-defined function. The
INIT construct means the registered function will be
called before the stream begins. The NEXT construct
means the function will be called whenever data are
available. The DONE construct means the function
will be called when data stream end. The user-define
functions can be created using “CREATE
FUNCTION” statement.

CREATE STREAM <stream_name>
({ColumnDefinition}[,……]
[,TableConstraints]
[, ARCHIVE (STORE|DISCARD) [(Migrate, Purge
Constraint)]]
[, SOURCE INIT <function_name>]
[, SOURCE NEXT <function_name>]
[, SOURCE DONE <function_name>]);

Example 3 shows the creation of the stream with
DISCARD specified. The specified functions are
called by the system according to the arrival of the
data stream.

Example3)
CREATE STREAM loc_stream
(id INT, position MPOINT
 , ARCHIVE DISCARD
, SOURCE INIT loc_stream_init
, SOURCE NEXT loc_stream_next
, SOURCE DONE loc_stream_done);

Example4 shows the creation of the stream with
STORE specified. Since STORE is specified,
MIGRATE is specified. The query migrates data to
disk after 30 days.

Example4)
CREATE STREAM trace_stream
(id, INT, position MPOINT
 , ARCHIVE STORE, MIGRATE TIME 30 days
, SOURCE INIT loc_stream_init
, SOURCE NEXT loc_stream_next
, SOURCE DONE loc_stream_done);

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp99-104)

The definition of the stream can be altered or dropped
by the following syntax.

ALTER STREAM <stream_name> ({Stream
Definition});

DROP STREAM <stream_name>;

 DML (Data Manipulation Language)

A. Update Statement

The update is the most characteristic feature of the
moving objects database. The following example
shows the new construct “add” to update a trajectory
of a moving object.

Example5)
INSERT INTO truck VALUES (1, importfromwkt
('MPOINT(2005/04/01 12:00:01, 1, 1'));
UPDATE truck APPEND position =
importfromwkt('MPOINT(2005/04/01 12:05:00, 4,
4)') WHERE id = 1;

First, a record representing a moving object should be
inserted. After the insertion, the reported locations
should be reflected in the database. The traditional
SQL syntax of the update statement was to use a pair
of update and set. However, we used “append” instead
of “set” because the newly reported location does not
replace whole trajectory but just appended at the end
of the trajectory. In case of not maintaining the past
trajectories, “set” construct can be used.

B. Retrieval Statement
The following syntax is used for pull-based queries or
ad-hoc queries. The ad-hoc query means the query is
posed to the system after the source stream begins.
The following syntax has new constructs such as
WINDOW and EXECUTE. The WINDOW is used
for the STREAM. The previous studies only supported
time interval. However, we suggest additional
WINDOW option: spatial range and spatio-temporal
range. The EXECUTE constructs can be used both
type of table. It specifies duration and interval for
execution of the SQL statement.

SELECT <select_list>
FROM <relation | stream>

WHERE <predicate>
[GROUP BY <group_by_expression>]
[ORDER BY <order_by_expression>]
[WINDOW <time interval | spatial range | spatio
temporal range>]
[EXECUTE INTERVAL <time> FOR <time>];

Example6 shows the example of the previous syntax.
It retrieves id and position of the table car every five
seconds for thirty hours.

Example6)
SELECT id, position
FROM car
EXECUTE INTERVAL ‘5s’ FOR ‘30hr’;

To register a continuous query (push-based query)
before stream begins, the following syntax can be
used.

REGISTER CONTINUOUS QUERY <cq_name>
(<SQL-statements>);

Example7 shows the example of REGISTER syntax.
It uses WINDOW to narrow query results.

Example7)
REGISTER CONTINUOUS QUERY cq_loc
(SELECT id, position
 FROM loc_stream AS loc
 WHERE within(loc, MPOLYGON(…))
 WINDOW loc [’10 min’]
);

The continuous query continues until it is explicitly
cancelled. The following syntax controls the execution
of the continuous query. The
DEACTIVATE/ACTIVATE pauses or restarts the
continuous query, while the DROP cancels the
registered query.

DEACTIVATE CONTINUOUS QUERY
<cq_name>;

ACTIVATE CONTINUOUS QUERY <cq_name>;

DROP CONTINUOUS QUERY <cq_name>;

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp99-104)

4.3 Architecture
The architecture of the proposed system is as follows.

Location Dispatche r

Location Report Handler

Location
Pre dic tor

Location
Filte r ing

Location Input
Coordinator

Query Engine

Pars e r

Optimize r

Executor

Acce s s
Me thods

Sche dule r

Location Stre am Storage Manage r

Working
Que ue

Res ult
Que ue

Summary
Storage

Me ta Data
Storage

Repos itory

Location Stream
Source Repos itory

Que ry
Repos itory

Location Stre am Source

Fig.2.Architecture of the Proposed System

- Location Dispatcher: this module receives location
reports from the moving objects. It supports both
pull-based source and push-based source. In the case
of push-based source the functions defined in the
CREATE STREAM statement are called. It transfers
the location to location report handler or location
stream storage manager according to the configuration
of the source.

-Location Report Handler: this module handles the
location reports to reduce the overhead of processing
location data. It controls the input rate of the location
reports or reduces the number of the location data
while maintaining quality or performs filtering.

-Location Stream Storage Manager: this module
stores and manages the location data. It consists of
working queue for query processing, summary storage
for synopsis information, result queue for streaming
results, and meta data queue for meta information of
data source and QoS.

-Query Engine: this module processes registered
queries or real-time queries (pull-based queries and
ad-hoc queries). It can optimize multiple queries using
shared global queue.

-Repository: This module manages and registers
location data stream and continuous queries.

5 Conclusion
In this paper, we proposed moving objects
management system supporting location data stream.
To support all functionalities required by LBS
applications, we added the functionalities of DSMS to
MODB. To achieve the goals, we introduced data
model, query language, and system architecture. The
proposed system can support both the pull-based
queries and push based queries. In the future, the
system can be used as database system for ubiquitous
sensor network.

References:
[1]R. H. Guting, M. H. Bohlen, M. Erwig, C. S.

Jensen, N. A. L. M. Schneider, and M.
Vazirgiannis, “A Foundation for Representing and
Querying Moving Objects,” In ACM-Transactions
on Database Systems Journal, pp.1-42, 2000

[2] D. Pfoser, C. S. Jensen, and Y. Theodoridis,
“Novel approaches in query processing for moving
objects,” Proc. of Int’l Conf. on Very Large Data
Bases, pp. 395-406, 2000

[3] S. Saltenis, C. S. Jensen, S.T. Leutenegger, and M.
A. Lopez, “Indexing the positions of continuously
moving objects,” Proc. of the ACM SIGMOD Int’l
Conf. on Management of Data, pp. 331-342, 2000

[4] A. P. Sistla, O. Wolfson, S. Chamberlain, and S.
Dao, “Modeling and Querying Moving Objects,”
In Proc. of the International Conference on Data
Engineering, pp.422-432, 1997

[5] G. Trajcevski1, O. Wolfson, F. Zhang, and S.
Chamberlain, “The Geometry of Uncertainty in
Moving Objects Databases,” in EDBT 2002,
LNCS 2287, pp. 233-250, 2002

[6] O. Wolfson, S. Chamberlain, K. Kalpakis, and Y.
Yesha, “Modeling Moving Objects for Location
Based Services,” in IMWS 2001, LNCS 2538, pp.
46-58, 2002

[7] L. Golab and M. T. Ozsu, “Issues in Data Stream
Management,” in SIGMOD Record, Vol.32, No. 2,
pp. 5-14, 2003

[8]CHOROCHRONOS:
http://www.dbnet.ece.ntua.gr/~choros/

[9] STREAM: http://www-db.stanford.edu/stream
[10] TelegraphCQ: http://telegraph.cs.berkeley.edu
[11]Aurora:

http://www.cs.brown.edu/research/aurora

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp99-104)

