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Abstract: - Optimal motion planning is critical for the successful operation of an autonomous mobile robot.  
Many proposed approaches use either fuzzy logic or genetic algorithms (GAs), however, most approaches 
offer only path planning or only trajectory planning, but not both.  In addition, few approaches attempt to 
address the impact of varying terrain conditions on the optimal path.  This paper presents a fuzzy-genetic 
approach that provides both path and trajectory planning, and has the advantage of considering diverse terrain 
conditions when determining the optimal path.  The terrain conditions are modeled using fuzzy linguistic 
variables to allow for the imprecision and uncertainty of the terrain data.  Although a number of methods have 
been proposed using GAs, few are appropriate for a dynamic environment or provide response in real-time.  
The method proposed in this paper is robust, allowing the robot to adapt to dynamic conditions in the 
environment. 
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1   Introduction 
Optimal motion planning is essential to the 
successful operation of an autonomous mobile robot.  
Motion planning is composed of two functions: path 
planning, and trajectory planning [1, 2].  Path 
planning generates a collision-free path through an 
environment containing obstacles.  The path is 
optimal with respect to some selected criterion.  
Trajectory planning schedules the movements of the 
robot along the planned path. 
     Many approaches to motion planning have been 
proposed.  However, most approaches address only 
path planning or only trajectory planning, but not 
both [1, 3-5].  The GA coding scheme used in this 
research combines path planning with trajectory 
planning, thus, eliminating the additional step of 
trajectory planning once an optimal path is found 
and reducing the computational time to allow a real-
time response. 
     It is common for GA-based approaches to motion 
planning to function only in a static environment 
due to the processing time required to produce an 
optimal solution [1, 3, 6-8].  However, many 
applications require that the robot respond to a 
changing environment and moving obstacles.  This 
research provides a method that allows the robot to 
function in a dynamic environment. 
     In most cases, GAs do not provide real-time 
solutions to motion planning problems [1, 3, 6-8].  
Those that do offer real-time response usually have 
unacceptable restrictions, such as limiting solutions 
to x-monotone or y-monotone paths [9].  An x-

monotone path is one in which the projection of the 
path on the x-axis is non-decreasing.  This places an 
unacceptable restriction on the solution path because 
even a simple path between two rooms in a building 
is neither x-monotone nor y-monotone as shown in 
Figure 1. 
 

 
 

Fig. 1 Non-monotone path between rooms 
 
     In an effort to reduce the computation time, some 
researchers have proposed encoding all 
chromosomes with a fixed length [9, 10].  However, 
it has been shown that for robot path planning fixed 
length chromosomes are too restrictive on the 
solution path by placing unnecessary constraints on 
the representation of the environment and on the 
path [6, 10]. 
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     Research into using genetic algorithms for path 
planning include the work of Shibata and Fukuda 
[11] who proposed a motion planning strategy for a 
point robot in a static environment.  Davidor [12] 
proposed GA approach attempts to minimize the 
accumulated deviation between the actual and 
desired path.  However, this assumes that a desired 
path is already known.  Nearchou [13] presented an 
approach using GAs that compares favourably with 
other evolutionary techniques, but it requires that the 
map be converted to a graph.  None of these 
approaches account for dynamic conditions. 
     A further restriction among current motion 
planning approaches is that few approaches consider 
varying terrain conditions with most labeling an area 
either free of obstacles or totally blocked [8, 10].  In 
many real world cases, an area may be composed of 
terrain that is difficult to traverse.  Difficult terrain 
may include sandy areas which cause slippage, 
rocky areas that require minor course adjustments 
within them and/or loss of time, or sloped areas that 
may cause slippage or increased time to climb.  
Such terrain may be traversable at the cost of 
increased time, but provide a more optimal path than 
totally clear terrain.  This paper proposes an 
approach to motion planning that provides real-time 
motion planning in a dynamic environment without 
the restrictions of monotone paths or fixed length 
chromosomes.  It also allows terrain to be labeled 
with the difficulty of traversal, thus, allowing it to be 
considered as a solution path. 
     Section 2 presents the representation of the 
environment and GA basics.  In Section 3, the new 
fuzzy genetic motion planning approach is 
presented.  Section 4 provides a discussion of the 
implementation and test results of the new motion 
planning approach. 
 
 
2   Problem Formulation 
 
 
2.1 Environment Grid 
The environment in which the robot will maneuver 
is divided into an environment grid and a path is 
described as a movement through a series of 
adjacent cells in the grid.  The length of the path  d 
(a, b)  between two adjacent cells a and b is defined 
as the Euclidean distance between the centers of the 
two cells.  This representation of distance allows the 
map data to be stored in any efficient format, such as 
a quadtree.  Storage by such methods provides more 
compact representation of an environment by storing 
large obstacles as a single grid location, rather than 

many uniformly sized small squares.  It also allows 
the path to be represented by fewer grid transitions, 
thus, reducing the size of the GA encoding string, or 
chromosome, and the time required to determine a 
solution.  Each cell in the grid is assigned a fuzzy 
value that indicates the difficulty in traversing the 
terrain in that cell.  The use of fuzzy values allows 
cells with moderately hostile terrain, such as rocks 
or loose sand, to be considered in a possible solution 
path while being weighted by their difficulty of 
traversal.  A cell which contains an obstacle is 
assigned a fuzzy value indicating it is impassable 
and any possible solution path containing it is 
unacceptable.  For this paper, the grid will be 
restricted to 16 by 16 for simplicity, however, the 
algorithm has been successfully tested for much 
larger sized grids.  Further discussion of this 
restriction and actual testing is found in the Test 
Results section of this paper. 
     For purposes of this research, the robot is 
considered to be a holonomic point, that is, it is able 
to turn within its own radius.  Because the robot is 
holonomic, a path can change direction within a cell 
and does not require a large arc for turning.  Since it 
is a point, when traversing between two diagonally 
adjacent cells, it is not necessary to consider the 
other cells sharing the common corner as shown in 
Figure 2.  This is not as impractical as it may appear 
at first glance.  All real obstacles are expanded by 
half the radius of the robot when marking which 
cells are obstructed, thus allowing the robot to be 
treated as a point.  This permits navigation of the 
center of the robot along the side of an obstacle or 
diagonally between obstacles.  In Figure 2, the 
actual obstacle is solid and the expansion is shaded. 
 

 
 

Fig. 2 Diagonal traversal of cells. 
 
 
2.2 Genetic Algorithms 
A genetic algorithm [14, 15] for optimization 
commonly represents a possible solution as a binary 
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string, called a chromosome.  Numerous approaches 
have been proposed for encoding paths as binary 
strings. 
     The GA begins with an initial population of 
chromosomes, or possible solutions.  The GA then 
creates new individuals using methods analogous to 
biological evolution.  The fitness of each 
chromosome is calculated using a fitness function.  
The criteria for evaluation is domain specific 
information about the relative merit of the 
chromosome.  For example, in the case of path 
planning, the fitness function may calculate the time 
required or distance traveled to move from the initial 
location to the goal.  The fittest parents are chosen to 
reproduce to create offspring.  The offspring are 
generated by subjecting the parent chromosomes to 
various genetic operators including crossover and 
mutation. 
     The crossover operator combines parts of two 
different chromosomes to create two new ones.  In 
single point crossover, the left part of a chromosome 
is combined with the right part of another, and then 
the remaining two parts of the originals are 
combined, thus, creating two offspring.  The 
crossover point is usually randomly selected, 
although it can be fixed.  Multiple point crossover 
divides the chromosome into multiple strings which 
are recombined with those of another chromosome. 
     The mutation operator changes the value of one 
random position in the chromosome.  The offspring 
produced is identical to the parent except at the 
mutation point.  For chromosomes represented as bit 
strings, this can be considered as inverting a single 
bit. 
     The most fit offspring replace the parents with 
the poorest fitness and the process continues until 
the population converges to a solution indicated by 
exceeding a fixed number of generations or until a 
chromosome attains a certain fitness value. 
 
 
3   Motion Planning Algorithm 
Several components can significantly affect the 
performance of a genetic algorithm: encoding of the 
chromosome, initial population, genetic operators 
and their control parameters, and fitness function. 
 
 
3.1 Encoding the Chromosome 
The first step is to choose a coding scheme which 
maps the path into a binary string or chromosome.  
Emphasis is placed on minimizing the length of the 
binary string.  Minimizing the length of the 
chromosome reduces the number of generations 

necessary to produce an acceptable solution because 
less permutations are possible. A variable length 
string composed of blocks which encode the 
direction of movement and the length of the 
movement was chosen.  Consider the robot in the 
center cell as in Figure 3 (a) having just arrived from 
cell 4 and facing in the direction of the arrow.  There 
are eight possible directions for movement.  
However, cell 4 can be eliminated from 
consideration for the next move since the robot 
came from that cell and returning to it would create 
a non-optimal path.  Cells 1, 2, 6, and 7 can be 
eliminated because they could have been reached 
from cell 4 using a shorter distance than through the 
center cell in which the robot currently is positioned.  
Only three cells remain in consideration for possible 
movement.  The three cells require only 2 bits to 
encode as in Figure 3 (b). 
 

 
 

 (a) (b) 
 

Fig. 3 Possible movement to next cell. 
 
     The largest number of cells that can be traversed 
in a square grid is found by starting in a corner and 
moving as far as possible along a side or the 
diagonal.  Since the grid is constrained to 16 by 16 
cells, the maximum number of cells that can be 
traversed in a single move is 15 which requires 3 
bits to encode.  As a result, each movement can be 
encoded in a 5-bit block as shown in Figure 4.  For 
larger n x n grids, the block size would be 2 + log 2 
n.  A chromosome composed of these 5-bit blocks 
contains not only the path, but also the necessary 
trajectory information for movement of the robot.  
Thus, this unique encoding provides both path 
planning and trajectory planning. 
 

 
 

Fig. 4 Block encoding of one movement 
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3.2 Initial Population 
The motion planning approach begins by randomly 
generating an initial population of chromosomes.  In 
an effort to direct the solution to the shortest path, 
another chromosome is added to the initial 
population.  It represents a straight line from the 
start to destination regardless of obstacles.  If a 
straight line is not possible due to grid locations, the 
closest approximation to a straight line path is used.  
Through the testing of various combinations of 
variables, it was found that a population size, p = 40, 
was sufficient to seed the chromosome base. 
 
 
3.3 Genetic Operators and Parameters 
The algorithm used single point crossover.  The 
crossover rate, γ, which is the percentage of parent 
chromosomes involved in the crossover, was 
selected as 0.8.  The mutation rate, µ, or probability 
that a particular bit in the string is inverted, was 
0.02.  These parameters were arrived at through 
experimentation. 
 
 
3.4 Fitness Function 
Selection of a fitness function is a critical aspect of 
this research.  Chromosomes are selected for 
reproduction through crossover and mutation based 
on the fitness function.  The value provided by the 
fitness function is then used to retain the best 
members of the population for the next generation.  
Common approaches to using GAs for path planning 
set the fitness to an unacceptable value for any 
chromosome whose path traverses a grid cell with 
an obstacle in it.  Otherwise, the fitness is based 
upon the distance traveled in the path.  However, 
this does not account for terrain conditions.  In an 
effort to consider adverse terrain conditions, each 
cell is assigned a value corresponding to the 
difficulty in traversing its terrain.  The difficulty in 
traversing a particular terrain is imprecise because it 
may vary from one instance to another.  In addition, 
it is problematical to compare different terrain 
conditions because of the varied nature of each.  
Further difficulty in a assigning a precise terrain 
difficulty exists because traversal of an cell in 
different directions can have significantly different 
difficulty levels.  For example, traversing a sandy 
hill moving downhill, uphill, or across the side of 
the hill have dissimilar difficulty levels.  Because of 
the imprecision of terrain conditions and the 
problems in directly comparing them, this research 
has chosen to express the terrain difficulty as fuzzy 
numbers.  The terrain condition for each cell is 

expressed as a triangular fuzzy number using the 
linguistic variables shown in Figure 5.  Terrain 
conditions represent the difficulty in traversing the 
cell which can be affected by conditions such as 
slope, sand, rocks, etc.  As a result, the fitness 
function must be expanded for this research.  For 
any path not passing through an obstacle, the fitness 
function uses the Euclidean distance between the 
centers of the cells traversed weighted by the terrain 
conditions for each cell 
 

 
 

Fig. 5 Fuzzy representation of terrain conditions 
 
 
3.5 Dynamic Environment 
The fuzzy genetic motion planning method allows 
the robot to function in a dynamic environment.  If 
an obstacle is detected by the robot where it not 
expected, the planner simply recalculates a new 
optimal path in real-time and the robot can continue 
its movement. 
 
 
4   Test Results 
The test software was implemented using C++ and 
Saphira robot control software.  It was tested first in 
the Saphira simulator and, then, on a Pioneer 2-DX 
mobile robot.  The Pioneer 2-DX is a holonomic 3-
wheeled robot with a 250 mm radius.  It is equipped 
with a suite of eight sonar sensors arranged as 
shown in Figure 6 and tactile bumpers.  A 
predefined map representing the environment as a 
grid was provided to the robot.  For clarity in 
presenting the test results, all results are shown for a 
16 by 16 grid.  This allows the demonstration of the 
algorithm’s functionality while maintaining 
readability of the images.  Testing has also been 
conducted using much larger grids and octree 
representations of the environment. 
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Fig. 6 Sonar sensor suite on Pioneer 2-DX robot 
 
     Figure 7 shows the path generated by the fuzzy 
GA method for a particular environment with no 
cell labeled as difficult terrain.  The S and D 
indicate the start and destination cells, respectively, 
of the robot and black cells indicate solid obstacles.  
Manual examination confirms that this is the 
optimal path.  This solution required seven 5-bit 
blocks in the optimal solution chromosome, 
including one to turn the robot to a starting 
orientation before beginning movement. 
 

 
 

Fig. 7 Path generation with no terrain problems 
 
     Next the labeling of terrain difficulty with fuzzy 
values was verified.  The shaded cells on the grid in 
Figure 8 were labeled as having Moderate difficulty 
to traverse.  This had no effect on the generation of 
the optimal path as should be the case.  However, 
when the same area was changed to Difficult, a 
different path was produced by the fitness function 
as shown in Figure 9.  When the Moderate area was 
enlarged as in Figure 10, the fitness function again 
detected a more optimal path which avoided the 
larger Moderate terrain area. 
 

 
 

Fig. 8 Path with Moderate area of difficulty 
 
 

 
 

Fig. 9 Path with Difficult terrain area 
 
 

 
 
Fig. 10 Path with large area of Moderate difficulty 

 
 
5   Conclusion 
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This research presents a fuzzy genetic algorithm 
approach to motion planning for an autonomous 
mobile robot that performs in real-time without the 
limitations of monotone paths.  Varying terrain 
conditions are represented as fuzzy values and are 
included in the path planning decision.  The 
encoding of the chromosome provides full motion 
planning capabilities and the method is capable of 
operation in a dynamic environment.  Further 
research directions include the ability to observe and 
learn terrain conditions during movement along the 
path. 
     This research has provided an approach that is 
preferable to many traditional path planning 
algorithms, such as those using search algorithms, 
because it incorporates trajectory planning into the 
solution.  Thus, once the optimal path is discovered, 
the trajectory information is immediately available 
for movement of the robot. 
     We have assumed perfect movement by the robot 
without accounting for drift and slippage.  
Additional research will incorporate localization to 
ensure the robot is on the planned path and provide 
necessary adjustments to the motion plan.  This 
paper has presented the algorithm using a very 
simplistic 16 x 16 grid for purposes of 
demonstrating its functionality and clarity of the 
images.  The approach has been successfully 
implemented using much larger grids and with 
octree representations of the environment.  It has 
also been assumed that the terrain conditions are 
known a priori.  Since this is not realistic in many 
applications, further research directions include the 
ability to observe and learn terrain conditions during 
movement along the path and to then adapt when 
more difficult terrain is discovered along the 
planned path. 
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