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Abstract: - The new general methodology for the electronic system design was elaborated by means of the 
optimum control theory formulation in order to improve the characteristics of the system design process. This 
approach generalizes the design process and generates a set of the different des ign strategies that serves  as the 
structural basis to the optimal strategy construction. The principal difference between this new methodology  
and before elaborated theory is the more general approach on the system parameters definition. The main 
equations for the system design process were elaborated. These equations include the special control functions 
that are introduced into consideration artificially to generalize the total design process. Numerical results 
demonstrate the efficiency and perspective of the proposed approach. 
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1 Introduction 
One of the main problems of the total quality design 
improvement is the problem of the computer time 
reduction for a large system design. This problem has 
a special significance for the VLSI electronic circuit 
design. The traditional system design methodology 
includes two main parts: the model of the system that 
can be described as algebraic equations or 
differential- integral equations and a parametric 
optimization procedure that achieves the cost 
function optimal point. By this conception it is 
possible to change optimization strategy and use 
different models and different analysis methods. 
However, the time of the large-scale circuit analysis 
and the time of optimization procedure increase when 
the network scale increases.  
 There are some powerful methods that reduce the 
necessary time for the circuit analysis. Because a 
matrix of the large-scale circuit is a very sparse, the 
special sparse matrix techniques are used successfully 
for this purpose [1]-[2]. Other approach to reduce the 
amount of computational required for the linear and 
nonlinear equations is based on the decomposition 
techniques. The partitioning of a circuit matrix into 
bordered-block diagonal form can be done by 
branches tearing as in [3], or by nodes tearing as in 
[4] and jointly with direct solution algorithms gives 
the solution of the problem. The extension of the 
direct solution methods can be obtained by 
hierarchical decomposition and macromodel 
representation [5]. An alternative approach for 
achieving decomposition at the nonlinear level 
consists on a special iteration techniques and has 

been realized in [6] for the iterated timing analysis 
and circuit simulation. Optimization technique that is 
used for the circuit optimization and design, exert a 
very strong influence on the total necessary computer 
time too. The numerical methods are developed both 
for the unconstrained and for the constrained 
optimization [7] and will be improved later on. The 
practical aspects of these methods were developed for 
the electronic circuits design with the different 
optimization criterions [8]-[9]. 
 The system design ideas described above can be 
named as the traditional approach or the tradition al 
strategy because the analysis method is based on the 
Kirchhoff laws. 
 The other formulation of the circuit optimization 
problem was developed in heuristic level some 
decades ago [10]. This idea was based on the 
Kirchhoff laws ignoring for all the circuit or for the 
circuit part. The special cost function is minimized 
instead of the circuit equation solving. This idea was 
developed in practical aspect for the microwave 
circuit optimization [11] and for the synthesis of 
high-performance analog circuits [12] in extremely 
case, when the total system model was eliminated.  
The last idea that excludes the Kirchhoff laws can be 
named as the modified traditional design strategy. 
 Nevertheless all these ideas can be generalized to 
reduce the total computer design time for the system 
design. This generalization can be done on the basis 
of the control theory approach and includes the 
special control function to control the design process. 
This approach consists of the reformulation of the 
total design problem and generalization of it to obtain 
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a set of different design strategies inside the same 
optimization procedure [13]. The number of the 
different design strategies, which appear in the 
generalized theory, is equal to M2  for the constant 
value of all the control functions, where M is the 
number of dependent parameters. These strategies 
serve as the structural basis for more strategies 
construction with the variable control functions. The 
main problem of this new formulation is the unknown 
optimal dependency of the control function vector 
that satisfies to the time-optimal design algorithm. 
 However, the developed theory [13] is not the 
most general. In the limits of this approach only 
initially dependent system parameters can be 
transformed to the independent but the inverse 
transformation is not supposed. The next more 
general approach for the system design supposes that 
initially independent and dependent system 
parameters are completely equal in rights, i.e. any 
system parameter can be defined as independent or 
dependent one. In this case we have more vast set of 
the design strategies that compose the structural basis 
and more possibility to the optimal design strategy 
construct. 
 
2 Problem Formulation 
In accordance with the new design methodology [13] 
the design process is defined as the problem of the 
cost function ( )C X  minimization for X R N∈   by 
the optimization procedure, which can be determined 
in continuous form as: 
 

  ( )dx

dt
f X Ui

i= , ,       (1)  
  
  Ni ,...,2,1=  
 
and by the analysis of the electronic system model in 
the next form: 
 

      ( ) ( )1 0− =u g Xj j ,       (2) 

        j M=1 2, ,.. . ,  
 
where N=K+M, K is the number of independent 
system parameters, M is the number of dependent 
system parameters, X is the vector of all variables 

( )X x x x x x xK K K N= + +1 2 1 2, , ..., , , ,... , ; U is the vector 

of control variables ( )U u u u M= 1 2, , ... , ;  uj ∈ Ω ;  

{ }Ω = 0 1; .  
 The functions of the right part of system (1) are 
depended from the concrete optimization algorithm 
and,  for   instance,    for   the   gradient   method   are 
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'   is equal to  ( )x t dti − ;   ( )η i X   is the implicit 

function  ( ( )x Xi i= η  )  that is determined by the 
system (2), C(X)  is the cost function of the design 
process.  
 The problem of the optimal design algorithm 
searching is determined now as the typical problem 
of the functional minimization of the control theory. 
The total computer design time serves as the 
necessary functional in this case. The optimal or 
quasi-optimal problem solution can be obtained on 
the basis of analytical [14] or numerical [15]-[16] 
methods. By this formulation the initially dependent 
parameters for i K K N= + +1 2, ,... ,  can be transformed 
to the independent ones when u j =1 and it is 
independent when u j =0. On the other hand the 
initially independent parameters for i K= 1 2, , . .. , , are 
independent ones always. 
 We have developed in the present paper the new 
approach that permits to generalize more the above 
described design methodology. We suppose now that 
all of the system parameters can be independent or 
dependent ones. In this case we need to change the 
equation (2) for the system model definition and the 
equation (3) for the right parts description.  
 Equation (2) defines the system model and is 
transformed now to the next one: 

 
( ) ( ) 01 =− Xgu ji        (4) 

 

Ni ,...,2,1=  and j ∈ J 
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where J is the index set for all those functions  
( )Xg j  for which  ui = 0, J = {j1, j2, . . .,jz},  js ∈ Π   

with s = 1, 2, . . ., Z,  Π  is the set of the indexes from 
1 to M, Π = {1, 2, . . ., M}, Z is the number of the 
equations that will be left in the system (4),  Z ∈{0, 1. 
. ., M}. The right hand side of system (1) is defined 
now as:  
 

( ) ( )

( ) ( ) ( ){ }Xdttx
dt

u
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i
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i
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for    Ni ,...,2,1= , 
 
where F(X,U) is the generalized cost function and it 
is defined as: 
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This definition of the design process is more general 
than in [13]. It generalizes the methodology for the 
system design and produces more representative 
structural basis of different design strategies. The 
total number of the different strategies, which 

compose the structural basis, is equal to ∑
=

+

M

i

i
MKC

0

. 

We expect new possibilities to accelerate the design 
process in this case. 
 
3 Numerical Results 
Some non-linear  passive and active  electronic circuits 
have been analyzed to demonstrate developed general 
system design approach. The circuits have various 
nodal numbers from 3 to 5. The numerical results 
correspond to the optimized integration step for 
system (1) integration.  
 
3.1  Example 1 
The passive four-node nonlinear circuit is analyzed 
below (Fig. 1) on basis of the proposed general 
design methodology. This problem includes five 
independent parameters ( )54321 ,,,, xxxxx , where 

1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 4

2
4 yx = , 5

2
5 yx = , and 

four originally dependent parameters ( )9876 ,,, xxxx , 

where 16 Vx = , 27 Vx = , 38 Vx = , 49 Vx = . The 
control vector U includes nine components 
( )921 ,...,, uuu . 

 
 

Fig. 1. Four-node circuit topology. 
 
 

The mathematical model of the circuit can be 
writing as the next system:  
 

( ) ( ) ( )[ ]( ) 076
2

7611
2
16001 =−−++−−≡ xxxxbaxxVyXg nn  

           
( ) ( )[ ]( )

( )[ ]( ) 087
2

87227
2
2

76
2

7611
2
12

=−−+−−

−−++≡

xxxxbaxx

xxxxbaxXg

nn

nn  

 
          (7) 

( ) ( )[ ]( )
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2
48

2
4

2
3

87
2

87223

=−+−

−−+≡

xxxxx

xxxxbaXg nn       

 
( ) ( ) 09

2
5

2
48

2
44 =+−≡ xxxxxXg      

 
where ( )2

21111 VVbay nnn −⋅+= , ( )2
32222 VVbay nnn −⋅+= . 

The system model (4) includes four equations where 
each function ( )Xg j  is defined by (7). The 
optimization procedure (1) includes  nine equations . 
System (7) is solved by the Newton-Raphson method. 
The cost function C(X) of the design process is 
defined by the following form:  
 

( ) ( ) ( ) ( )2
287

2
176

2
09 kxxkxxkxXC −−+−−+−= .  

    (8) 
 

The total number of the different design strategies 
that compose the structural basis of the generalized 

theory is equal to 256
4

0
9 =∑

=i

iC . At the same time the 

structural basis of the previous developed theory 
includes 16 strategies only. It is clear that not all the 
new strategies lead to the design problem solution. 
Some strategies  have a bad stability. Nevertheless 
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there many new strategies that have very high design 
properties. The results of the structural basis 
strategies that include all the “old” strategies  (the last 
16 strategies) and some new strategies are shown in 
Table 1.  

 
Table 1. Some strategies of the structural basis for 

four-node circuit. 
 

 
The strategy 13 is the traditional one. There are seven 
different strategies among “old” group that have the 
design time less that the traditional strategy. These 
are the strategies 16, 18, 20, 24, 26, 27 and 28. The 
strategy 18 is the optimal one among all the “old” 
strategies and it has the time gain 5.06 with respect to 
the traditional design strategy. On the other hand the 
best strategy among all the strategies (number 7) of 
the Table 1 has the time gain 29.2. So, we have the 
additional acceleration 5.77 times. This effect was 
obtained on basis of more extensive structural basis 
and servers as the principal result of the new 
generalized methodology. The posterior analysis and 
the control vector U optimization can increase this 
time gain as shown in [17].  

3.2  Example 2 
In Fig. 2 there is a circuit that has 6 independent 
variables as admittance y y y y y y1 2 3 4 5 6, , , , ,  (K=6) and 
5 dependent variables as nodal voltages  
V V V V V1 2 3 4 5, , , ,   (M=5) at the nodes 1, 2, 3, 4, 5.  
 

 
 

Fig. 2.  Five-node circuit topology.  
 

The nonlinear elements have next dependency: 

( )2
23111 VVbay nnn −⋅+= , ( )y a b V Vn n n2 2 2 4 2

2
= + ⋅ − . The 

vector X includes eleven components. The first six 
components are defined as: 1

2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 

4
2
4 yx = , 5

2
5 yx = , 6

2
6 yx = . The others components 

are defined as: 17 Vx = , 28 Vx = , 39 Vx = , 

410 Vx = , 511 Vx = . The control vector U includes 
eleven components too. The total structural basis 
includes  1024 different strategies  in the limits of the 
new approach. The previous structural basis includes 
32 strategies only. 

The mathematical model (4) of this circuit is 
defined on the basis of nodal method and includes 
five equations in this case. The optimization 
procedure includes eleven equations and it is based 
on formulas (1) and (5). The cost function C(X) is 
defined by the formula similar to (8) with the 
necessary index correction for all the components: 
 

( ) ( ) ( )[ ] ( )[ ]22
2

109

2

1
2

98
2

011 kkxxkkxxkkxXC −−+−−+−= . 
 
The results for old structural basis strategies are 
shown in Table 2a for those strategies that have the 
computer time less than the traditional one. The 
results for some new structural basis strategies are 
shown in Table 2b. The strategy 1 of Table 2a is the 
traditional one. The time gain of the best old strategy 
(23 from Table 2a) with respect to the traditional 
strategy is equal to 1158. This is a significant time 
gain, but we have more perspective strategies 
between the new structural basis. The design time for 
strategies 11,12,14,15 from Table 2b is less than the 
best  strategy  23  from  Table 2a. 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9) number time (sec)
1          ( 1 1 1 0 1 0 0 0 1 ) 5 0.0031
2          ( 1 1 1 1 1 0 0 0 1 ) 397 0.4312
3          ( 1 1 1 0 1 1 0 0 1 ) 5 0.0029
4          ( 1 1 0 1 1 1 1 1 0 ) 119 0.0209
5          ( 1 1 1 1 0 0 1 0 1 ) 101 0.0232
6          ( 1 1 1 0 1 0 0 1 1 ) 15 0.0134
7          ( 1 1 1 0 1 1 1 0 1 ) 5 0.0009
8          ( 1 1 1 0 1 1 1 1 1 ) 101 0.0243
9          ( 1 1 1 1 0 0 1 1 1 ) 185 0.0324

10          ( 1 1 1 1 0 1 0 0 1 ) 74 0.0102
11          ( 1 1 1 1 0 1 0 1 1 ) 121 0.0254
12          ( 1 1 1 1 0 1 1 1 1 ) 159 0.0127
13          ( 1 1 1 1 1 0 0 0 0 ) 33 0.0263
14          ( 1 1 1 1 1 0 0 0 1 ) 397 0.4317
15          ( 1 1 1 1 1 0 0 1 0 ) 6548 7.1392
16          ( 1 1 1 1 1 0 0 1 1 ) 76 0.0122
17          ( 1 1 1 1 1 0 1 0 0 ) 456 0.5113
18          ( 1 1 1 1 1 0 1 0 1 ) 24 0.0052
19          ( 1 1 1 1 1 0 1 1 0 ) 3750 4.3661
20          ( 1 1 1 1 1 0 1 1 1 ) 90 0.0095
21          ( 1 1 1 1 1 1 0 0 0 ) 68 0.0354
22          ( 1 1 1 1 1 1 0 0 1 ) 596 0.6213
23          ( 1 1 1 1 1 1 0 1 0 ) 5408 6.2191
24          ( 1 1 1 1 1 1 0 1 1 ) 78 0.0255
25          ( 1 1 1 1 1 1 1 0 0 ) 238 0.2104
26          ( 1 1 1 1 1 1 1 0 1 ) 77 0.0227
27          ( 1 1 1 1 1 1 1 1 0 ) 139 0.0131
28          ( 1 1 1 1 1 1 1 1 1 ) 131 0.0103
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Table 2a. Some strategies of old structural basis. 
 

 
 
Table 2b. Some strategies of new structural basis. 

 
 
The best strategy 11 has the time gain 11587, i.e. ten 
times more.  These examples show that the time gain 
of the new structural bas is increases when the circuit 
size and complexity increase. 

3.3  Example 3 
It is interesting to analyze the active circuit with at 
least one transistor. This circuit is shown in Fig. 3. 
 

 
 

Fig. 3. One transistor amplifier. 
 
In this case there are three independent variables 

321 ,, yyy  as admittance (K=3) and three dependent 

variables 321 ,, VVV  as nodal voltages (M=3). The 
state parameter vector X includes six components: 

1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = , 

36 Vx = . The design process has been realized on 
DC mode. The Ebers-Moll static model of the 
transistor has been used. The cost function ( )C X  
has been determined as the sum of the squared 
differences between beforehand-defined values and 
current values of the voltages for the transistor 
junctions. The old structural basis includes 8 
strategies only, and the new basis includes 32 
strategies. The results of this circuit design are 
shown in Tables 3a and 3b. Table 3a includes all 
strategies of old structural basis and Table 3b 
includes some strategies of new structural basis. 
 

Table 3a. Old structural basis strategies. 

 
The best strategy of old basis (8 from Table 3a) has 
time gain 14.3. The best strategy of new basis (1 
from Table 3b) has time gain 58.6. So, we have an 
additional acceleration more than 4 times. This is the 
main result of new generalized system design 
methodology. 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11) number time (sec)
1          ( 1 1 1 1 1 1 0 0 0 0 0 ) 15026 11.587
2          ( 1 1 1 1 1 1 0 0 0 1 1 ) 4387 1.522
3          ( 1 1 1 1 1 1 0 0 1 1 0 ) 1479 2.043
4          ( 1 1 1 1 1 1 0 0 1 1 1 ) 340 0.041
5          ( 1 1 1 1 1 1 0 1 0 1 0 ) 1480 1.743
6          ( 1 1 1 1 1 1 0 1 0 1 1 ) 563 0.072
7          ( 1 1 1 1 1 1 0 1 1 0 0 ) 154 0.021
8          ( 1 1 1 1 1 1 0 1 1 0 1 ) 174 0.023
9          ( 1 1 1 1 1 1 0 1 1 1 0 ) 368 0.043

10          ( 1 1 1 1 1 1 0 1 1 1 1 ) 688 0.051
11          ( 1 1 1 1 1 1 1 0 0 1 0 ) 65 0.011
12          ( 1 1 1 1 1 1 1 0 0 1 1 ) 4312 0.821
13          ( 1 1 1 1 1 1 1 0 1 0 0 ) 5601 7.112
14          ( 1 1 1 1 1 1 1 0 1 0 1 ) 854 0.081
15          ( 1 1 1 1 1 1 1 0 1 1 0 ) 483 0.052
16          ( 1 1 1 1 1 1 1 0 1 1 1 ) 367 0.031
17          ( 1 1 1 1 1 1 1 1 0 0 0 ) 354 0.352
18          ( 1 1 1 1 1 1 1 1 0 0 1 ) 548 0.063
19          ( 1 1 1 1 1 1 1 1 0 1 0 ) 98 0.012
20          ( 1 1 1 1 1 1 1 1 0 1 1 ) 1144 0.102
21          ( 1 1 1 1 1 1 1 1 1 0 0 ) 80 0.009
22          ( 1 1 1 1 1 1 1 1 1 0 1 ) 535 0.044
23          ( 1 1 1 1 1 1 1 1 1 1 0 ) 194 0.01
24          ( 1 1 1 1 1 1 1 1 1 1 1 ) 254 0.011

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11) number time (sec)
1         ( 1 0 1 1 1 1 0 1 1 1 1 ) 95361 24.254
2         ( 1 0 1 1 1 1 1 1 0 1 1 ) 16457 14.521
3         ( 1 0 1 1 1 1 1 1 1 0 1 ) 2649 0.311
4         ( 1 0 1 1 1 1 1 1 1 1 0 ) 458 0.901
5         ( 1 1 1 0 0 1 1 1 1 1 1 ) 227 0.201
6         ( 1 1 1 0 1 0 1 1 1 1 1 ) 956 0.109
7         ( 1 1 1 0 1 1 0 1 1 1 1 ) 958 0.111
8         ( 1 1 1 0 1 1 1 0 1 1 1 ) 1369 0.162
9         ( 1 1 1 0 1 1 1 1 0 1 1 ) 1352 0.141

10          ( 1 1 1 0 1 1 1 1 1 1 0 ) 13556 1.733
11          ( 1 1 1 1 0 1 0 0 0 0 1 ) 5 0.001
12          ( 1 1 1 1 0 1 0 0 0 1 1 ) 20 0.002
13          ( 1 1 1 1 0 1 0 1 1 1 1 ) 134 0.011
14          ( 1 1 1 1 0 1 1 0 1 1 1 ) 51 0.0095
15          ( 1 1 1 1 0 1 1 1 0 1 1 ) 45 0.0022
16          ( 1 1 1 1 0 1 1 1 1 0 1 ) 82 0.012
17          ( 1 1 1 1 0 1 1 1 1 1 1 ) 142 0.013
18          ( 1 1 1 1 1 0 0 1 1 1 1 ) 221 0.032
19          ( 1 1 1 1 1 0 1 0 1 1 1 ) 742 0.091
20          ( 1 1 1 1 1 0 1 1 0 1 1 ) 77 0.011
21          ( 1 1 1 1 1 0 1 1 1 0 1 ) 266 0.033

N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2, u3, u4, u5, u6 ) number time (sec)
1          ( 1 1 1 0 0 0 ) 826 3.108
2          ( 1 1 1 0 0 1 ) 707 1.813
3          ( 1 1 1 0 1 0 ) 1791 4.594
4          ( 1 1 1 0 1 1 ) 1224 2.709
5          ( 1 1 1 1 0 0 ) 887 2.163
6          ( 1 1 1 1 0 1 ) 153 0.335
7          ( 1 1 1 1 1 0 ) 1045 2.222
8          ( 1 1 1 1 1 1 ) 309 0.217
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Table 3b. Some strategies of new structural basis. 
 

 
4 Conclusion 
The traditional method for the analog circuit design 
is not time-optimal. The problem of the optimal 
algorithm construction can be solved more 
adequately on basis of the optimal control theory 
application. The time-optimal design algorithm is 
formulated as the problem of the functional 
optimization of the optimal control theory. In this 
case it is necessary to select one optimal trajectory 
from quasi-infinite number of different design 
strategies that are produced. The new and more 
complete approach to the electronic system design 
methodology has been developed now by means of 
broadened structural basis definition. The total 
number of the different design strategies, which 
compose the structural basis by this approach, is 

equal to ∑
=

+

M

i

i
MKC

0
. This new structural basis serves 

as the necessary set for the optimal design strategy 
search. This basis includes new and very perspective 
strategies that can be used for the time-optimal 
design algorithm construction. This approach can 
reduce considerably the total computer time for the 
system design. Analysis of the different electronic 
systems gives the possibility to conclude that the 
potential computer time gain that can be obtain by 
means of the broadened structural basis is 
significantly larger than for previous developed 
methodology. 
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N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2, u3, u4, u5, u6 ) number time (sec)
1          ( 1 0 1 1 1 1 ) 30 0.053
2          ( 1 1 0 1 1 1 ) 778 1.391
3          ( 1 0 1 1 1 0 ) 5599 25.094
4          ( 0 1 1 1 0 0 ) 1285 10.902
5          ( 0 1 1 1 1 0 ) 3015 10.998
6          ( 0 1 1 1 0 1 ) 47 0.089
7          ( 1 1 0 0 1 1 ) 174 0.465
8          ( 1 1 0 1 0 1 ) 606 1.223
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